Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com

A comparison of most recent MapReduce joins algorithms

Majeed Bander Al-Rewili
Computer Science Engineer, University of Edinburgh
E-mail: Maj_Rewili@hotmail.com

Abstract:

In this interesting line of research, an attempt has been to overview different parallel processing
platforms that implement MapReduce jobs. This survey provides a wide-ranging analysis of work and
publications related to MapReduce framework to data, and it also can be used as a basis for further research
and examination. The scope of this survey is focused on pre-processing, pre-filtering, partitioning,
replication, load balancing, performance, memory space, communication cost, and query processing and
optimization aspects in the light of big data analysis in MapReduce. Moreover, a set of efficient optimized
and improved approaches in the context of analytical query processing and optimizing using MapReduce. It
provides an added value to current research published yearly by introducing a comprehensive classification
of recently presented papers in the era of join types using MapReduce. From data-centric perspective, the
main topic of this approach is intended to highlight the importance of traditional problems of data

management and analysis in the regard of efficient big data processing and analysis approaches.

Keywords: MapReduce, Hadoop, join types, multi-way join, theta-join, KNN join, top-k join, graph

similarity join, semi join, filter join, bloom join, intersection join.

87

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
I. INTRODUCTION

There are many systems have been developed primarily to adopt big data analysis such as Yahoo’s
PNUTS, Twitter Storm, LinkedIn’s Kafka, and especially Google’s MapReduce. MapReduce, because of its
simplicity, transformed the receiving of big data and large-scale processing; it becomes the most common
framework used for vast datasets analysis based on machine learning techniques. Apache Hadoop is an open
source which implements MapReduce framework and it has performed high popularity in both academia

and industry due to its widespread usage [7].

MapReduce implementation in DBMS supports a set of functions: storage management, data
partitioning, data compression, storage management, query optimization, and indexing. Hadoop DB presents
the strategies of partitioning and indexing for parallel DBMSs based on MapReduce framework. Hadoop
DB architecture includes three layers: top layer, middle layer, and bottom layer. In top layer, Hive is
extended to convert queries to MapReduce jobs. In middle layer, MapReduce infrastructure and HDFS are
implemented including fault tolerance, shuffling data between nodes, and caching intermediate files. In
bottom layer, there are a set of computing nodes distributed in side layer to run individual instance of
PostgresSQL DBMS and to store data [17].

Hadoop is an open source implementation of MapReduce which is the most common framework
increasingly used by many companies including huge number of users. Hadoop is mainly compound of two
parts: Hadoop Distributed File System (HDFS) and MapReduce to achieve distributed processing. Hadoop
contains various servers: Job-Tracker and Task-Tracker to perform MapReduce, and Name-Node,
Secondary Name-Node, and Data-Node to manage HDFS. MapReduce supports parallel processing of vast
datasets; it includes two functions: Map function and Reduce function. Any job which has to be performed
by MapReduce should go through these two phases. Map function is also called mapper which takes input
including key-value pairs. It also performs some computational processes on the input to produce
intermediary outputs formed also with key-value pairs. While Reduce function, which is also called reducer

processes the obtained results from Map function; the data are shuffled to perform reduce phase. Shuffle

88

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
phase sometimes takes time, network bandwidth, and other resources more than two main functions, Map

and Reduce [7].

Data is stored by default in HDFS which consists of several Data-Nodes to store data. It also consists of
Name-Node, a master node, to monitor Data-Nodes and maintain all Meta data. Data in HDFS is separated
into multiple chunks that contain different Data-Nodes and equivalent in size. Two system processes are
established, Job-Tracker and Task-Tracker, in MapReduce runtime. Job-Tracker is responsible to split a job
into two phases: map and reduce that the user defines. It also arranges all tasks among different Task-
Trackers. After that, Task-Tracker accepts the job and starts to process tasks assigned to map reduce
functions. Task-Tracker will take a data chunk defined by Job-Tracker and apply map task on. Once every

map task completes, all intermediate results are grouped into reduce tasks in order to obtain the results [18].

HDFS is a distributed file designed to store big data files in a stream data form with access pattern. It is
designed to recognize and respond individual machines failures since it is potential to work on commercial
hardware. The main workflow is as follows: data are copied to HDFS to perform MapReduce, and then
results are also copied from HDFS. So HDFS is usually not the key storage of data. This typical workflow
scenario of using HDFS obeys to an access model called write-once read-many. In this model, random
access to file parts is essentially costly in comparison with sequential access since HDFS is optimized for

streaming access of large files. Files are possible to be only appended; there is no file update support [7].

A. Query optimization

Query plan optimization using many plan generations and selection algorithms can be performed and
developed to find optimal plan for relational DBMSs. In addition, MapReduce system can further improve
these optimization algorithms. Query optimization algorithms and more elaborate algorithms are needed
since MapReduce jobs usually run longer than relational queries. Additionally, query execution time and
query optimization time should be balanced to run fast relational optimization algorithms. To reduce the
plan search space and to pipeline data between operators, only left deep plans are typically considered in
most relational DBMSs. Query execution is more significant for efficiency so there will be no pipeline

between the original MapReduce and the operator [17].

89

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
In this paper, we considered a set of papers related to MapReduce published early in main database

journals and conferences from 2009 to 2016. We attempt to analyze the limitations of existing surveys’
approaches related to MapReduce in order to outline their shortcomings and to make a comparison between
them. In addition, we aim to define major encountered problems in terms of MapReduce tasks processing in
order to provide categorization of entire work and research comprehensively according to the addressed
problems. The main contribution of this paper is to present a powerful citation of current problems and their
potential solving techniques and to talk about future work to improve novel systems in terms of MapReduce
processing tasks. In our survey, we focus on the improvements of MapReduce framework by reviewing the
primary MapReduce framework and its multiple implementations. Different approaches have been
implemented using MapReduce framework since it has no real specification of the way of implementing
components. Therefore, we compare the design and features of different well known implementations of

MapReduce framework.

Il. BACKGROUND/LITERATURE REVIEW

In the following section, an overview is introduced to provide many techniques and methods presented in
the literature in terms of MapReduce performance improvement. We organize the categorized approaches of

MapReduce improvement in a specified classification based on the introduced improvement.

Many purposes have been realized to improve the usefulness of database operators via MapReduce
algorithms especially in intensive applications. In MapReduce framework, Map function is able to easily
support simple operators such as select and project, but it cannot achieve theta-join, equi-join, multi-way

join, and similarity join [17].

A. Multi way join

Multi-way join is more complex join implementation than binary join. It can be implemented either using
only one MapReduce job which is called replicated join or using multiple MapReduce jobs (one job for
every join). Multiple MapReduce jobs are used to execute multi-way join by achieving a series of equi-

joins. Every single equi-join is performed by one MapReduce job, and every result of one MapReduce job

90

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
passes to next MapReduce job as input. Usually, several join orders can lead to different performance based

on different query plans that can be generated [17].

In the paper of [20], a multi-way join was presented to compute a set of matrix multiplications among
several relations. The proposed algorithm can reduce the number of binary multiplications by taking the
advantage of multi-way join operation. The proposed algorithm was implemented based on MapReduce
framework, which provides us an ability to achieve the scalability of large matrix multiplication. The paper
took a different perspective differs than several papers have investigated matrix multiplication using
MapReduce. In the paper, the concept of parallelism was employed in the expansion of the problem from
binary multiplication to n-ary multiplication of the whole equation. The multiplication was translated into a
join operation in database systems to facilitate the efficiency of the matrices storage and to easier matrices
multiplication of the most common matrices in graph data. Three types of algorithms were implemented:
S2, P2, and PM. The experiments were processed on real world graph data in the paper have demonstrated
the capacity of the parallel m-way join to enhance the process of matrix multiplication. Because of using the
raw key implementation, the parallel two-way join algorithm can balance the intra-operation parallelism and

inter-parallelism approaches.

In the paper of [12], three-way joins on MapReduce was studied in order to utilize distributed
computation of joins using clusters of many machines for efficient graph algorithms. A state-of-the-art
MapReduce multi-way join algorithm was shown in the paper to provide the appropriateness of using it with
huge datasets. The aggregation step can be integrated into a cascade of two-way joins if the join result needs
to be summarized or aggregated to get more efficiency. In the paper, the focus was on three-way joins for
MapReduce specially for social networks analysis. However, the result of the join should be preferably
cascaded of two-way joins to reduce the communication cost. Multi-way join algorithms are divided into

three sub-types including Replicated join, Star join, and Theta-join as shown as follows:

91

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
e Replicated join
Replicated join is performed by as a single MapReduce job to perform multi-way joins. There is a special
case of replicated join called star join that perform all join conditions on the same attribute or a set of same
attributes [17].

e Star join

Star join can be implemented by one MapReduce job by setting the map output key to be the join
attribute and deploying load balanced if needed [17].

e Theta join

Theta-join or 0-join is a join operator contains one of the following join conditions: (<, >, =, <=, >=, or
I=) [17]. In real practices, more specifically in complex relations, multi-way theta-join queries are powerful.
The most challenging task is to minimize the total processing time span through the best schedule sequence

of execution of MapReduce jobs by mapping multi-way theta-join query [34].

In the paper [21], a proposed algorithm to implement theta-join as a single MapReduce job was
presented. The implementation was achieved without changing MapReduce framework by constructing
proper functions of Map and Reduce. The goal of the paper is to minimize job completion time. To do this,
an appropriate join matrix-to-reducer mappings was used to define a great diversity of join implementations.
An algorithm was proposed called 1-Bucket-Theta that uses matrix-to-reducer mappings on any join which
has output significantly fraction of cross product and on cross product especially. Moreover, even though
the proposed algorithm, 1-Bucket-Theta, is slower than other faster algorithms, other algorithms cannot be
identified as usable unless knowing the join result in advance or performing expensive an analysis. The
proposed algorithm consists of M-Bucket class of algorithms that can exclude large regions of join matrix
and reduce input-related costs to improve running time for any theta-join. The proposed approach does not
need to change MapReduce model; it supports any theta-join in a single MapReduce job. Indeed, the
proposed algorithm can be integrated with high level programming languages on top of MapReduce. There

are better algorithms that 1-Bucket-Theta for selective join conditions. On the other hand, these algorithms

92

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
include an essential fraction of the join matrix cells that are unassigned to any reducer. In practice, finding

enough of such matrix cells can be impossible or computationally very expensive due to complex user-
defined join conditions and insufficient input statistics. Due to the lack of proof that better matrix-to-reducer

mapping does not miss any output tuple, we cannot use it.

Extending current solutions from traditional distributed and parallel databases for multi-way theta-join
queries is relatively difficult to fit huge data volumes. In the paper of [34], a study was conducted from cost
effective perspective of the problem of efficient processing of multi-way theta-join queries based on
MapReduce identification and scheduling. Efficient processing of multi-way theta-join has not never been
fully explores although of many works have been done using key-value pair-based programming model to
support join operations. The most challenging task is to minimize the total processing time span through the
best schedule sequence of execution of MapReduce jobs by mapping multi-way theta-join query. The main
solution provided in the paper includes two parts: using only single MapReduce job for efficient execution
of chain-typed theta-join, and how to execute single MapReduce job or a set of MapReduce jobs in a certain
order and the corresponding cost metrics. The method can achieve substantial improvement of the join
processing efficiency compared to other widely adopted solutions. In fact, the work introduced for the first
time the exploration and evaluation of multi-way theta-joins using MapReduce. In the work, a set of rules
were established to decompose a multi-way join query, in order to evaluate the cost model to execute multi-
way join query for both single MapReduce job and multiple MapReduce jobs. Thus, extensive experiments
were conducted to validate the proposed cost model and the solution of multi-way theta-join queries, and to
compare with the state-of-art solutions in terms of query evaluation efficiency. A Hilbert curve based space
partition method was proposed in the paper to reduce the volume of copying data over network and to adjust
the reduce tasks workload. Certainly, the proposed schema in resource restricted scenarios for scheduling

can help to achieve the evaluation of complex join queries a near optimal time efficiency.

In the paper [13], a binary theta-join and pre-processing clustering algorithm were introduced in
MapReduce framework. The optimal trade-off between the communication cost and the size of the input can
be reached using the best-known algorithm which has high join selectivity. Thus, the improvements of the

state-of-the-art have been presented when the join selectivity is low. In addition, load imbalance was

93

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
considered across reducers to decrease the communication cost and the maximum load of a reducer. The

proposed algorithm in the paper is based on 1-Bucket-Theta and M-Bucket. 1-Bucket-Theta requires
minimal statistical information and examines all tuples pairs, making it the most generic algorithm. M-
Bucket-I is better than 1-Bucket-Theta in cases that the join selectivity is small. The worst-case behavior of
1-Bucket Theta matches the lower bounds for the binary theta-join problem, so an analysis was performed.
Clustering histogram buckets were performed to improve these algorithms by achieving more efficient
partitioning of histogram buckets to reducers. The imbalance across reducers, the maximum reducer input,
and the replication rate are the main factors of the efficiency. In the paper, the results have revealed that
load imbalance is not significantly affected by improving the replication rate and maximizing reducer input.
The main difference between M-Bucket-O and M-Bucket-l is that the earlier aims to minimize the
maximum reducer output, whereas the last aims to minimize the maximum reducer input. Join Matrix (JM)
is used to operate M-Bucket-I partitioner. JM includes each cell corresponds to pair of histogram buckets;
trying to create a region for each single reducer and fit cells in these regions. The main goal is to improve
the quality of the partitioner phase by reducing rows and columns of JM. The results confirmed that the
proposed partitioning algorithm provides up to 59% better time performance. Once the selectivity becomes
lower and the number of the band condition increase, the improvements become more significant. However,

the approach is not intrusive; it can be integrated with the existing state-of-the-art.

In the paper [31], a proposed algorithm called Strict Even Join (SEJ) was designed to partition multi-way
theta joins into smaller groups and selects the best one based on one MapReduce job. Therefore, by calling
SEJ algorithm, a dynamic algorithm is elaborated to optimize the multi-way theta joins. The experiments
have proved the feasibility and efficiency of the proposed randomized algorithm. A method called
largrangian was used to minimize the communication cost between map and reduce functions and to
compute the estimated results per relation. The experiments in the paper have shown the efficiency and the
stability of the proposed algorithm in terms of multi-way joins using one MapReduce job rather than

cascades of two-way joins.

94

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

... WWW.MeCsj.com

B. Equi join
Equi-join is a special case of theta-join where join condition can be only”=". MapReduce implementation
follows strategies of earlier parallel database implementation on equi-join operator [17]. Equi-join exploits
MapReduce key-equality which requires more complex join based data flow management. MapReduce
provides balancing between mapper nodes easily due to its simplicity nature. However, in some cases,
standard equi-join algorithm could delay job completion whether a reducer receives a larger shared work.
For this reason, balance load between reducers can resolve the issue by minimizing the greater amount of
work allocated to a reducer and then minimizing job completion time [21]. Equi-join implementation has

four variant types: repartition join, map-only join, reduce-only join and semi join [17].
e Repartition join

The default join algorithm and the most basic equi-join implementation for MapReduce in Hadoop is
repartition join which is the most general join method that can be implemented as one MapReduce job. In
repartition join, map phase repartitions two tables and then tuples are shuffled with the same key. After that,

the result of map phase is assigned to the same reducer which joins the generated tuples [17].
e Map-only join

Map-only join consists of only map phase; it partitions input data based on the join key and then shuffles
it to the reducers. Map-only join can be implemented on co-partitioned relations based on the join key [17].
Map-side join is an algorithm without Reduce phase [24]. The data sets in addition to their partition are
sorted by the same ordering. The two sets of data pre-partitioned into the same number of splits by the same
partitioner. This algorithm buffers all records with the same keys in memory, as is the case with skew data

may fail due to lack of enough memory [24].
e Replication side join

Reduce-side join is an algorithm which performs data pre-processing in Map phase, and direct join is
done during the Reduce phase [24]. The preprocessing is sorting for the keys. Semi-joins filtering is used to

filter the original data. The partitioner must split the nodes by the key. The reducer should have enough

95

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
memory for all records with a same key. It is the most time-consuming, because it contains an additional

phase and transmits data over the network from one phase to another. The algorithm has to pass information
about source of data through the network [24].

e Semi join
Semi-join can be implemented on MapReduce even it has been well studied in parallel database systems.

It is efficient when the result of semi join is relatively small since it requires several MapReduce jobs and

the result of semi join must be implemented first [17].

In the paper [3], a study of the properties hash-based and sort-based equi-join algorithms was focused in
case of fully joining datasets loaded into the main memory. In large high performance distributed data
processing system, building block of a single node setting is very important factor. When running analytical
data processing services on hardware shared among parallel services, memory footprint is an important
deployment consideration. The critical contributions of the work are: studying the impact of memory
footprint for each join algorithm on the number of parallel queries can be achieved, in addition to improving
query response time through allowing system implementers and query optimizers to use the optimal join
algorithm. In addition, the impact of two physical characteristics of join algorithms regarding their input and
output (data being hash partitioned on the join key and data being pre-sorted on the join key) was considered
in the paper to measure the performance. To optimize complex query pipelines with multiple joins. In
general, equi-join is expensive process and the improving the overall performance of main memory data
processing is relatively a challenging task. The results showed that hash-based join algorithm performs
faster than sort-based join algorithms in most cases. Thus, the hash-based algorithm consumes smaller
memory footprint compared to sort-based algorithms. When join inputs is already sorted, sort-based
algorithms become competitive. The main conclusion of the paper is that considering the physical
characteristics of the input and output is required to achieve the best response time and consolidation for

main memory equi-join processing.

96

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.Mecsj.com
C. Similarity join
Similarity join is one of many applications of join conditions where the results are similar to the join
condition value but not equal to exact value. Therefore, there have been many proposed algorithms to find
top-k most similar pairs, k-nearest returned tuples from two relations, and KNN join which finds the
similarity between tuples based on their distances [17]. String similarity joins have received considerable
interest. String similarity join is widely applied that aims to find all string pairs based on user defined
threshold and a given similarity function [25].

In the paper [27], an efficient set-similarity join algorithm was proposed based on MapReduce to achieve
joins in parallelism. For end-to-end set-similarity joins, a three-stage approach was proposed that takes a set
of records as input and provides a set of joined records according to the set-similarity condition. In order to
minimize the need for replication and to balance the workload, an efficient data-nodes partitioning
technique was proposed. Both self-join and R-S joins were used to control the amount of data-nodes in main
memory. The data still does not fit into main memory of a node even of the use of the most fine-grained
partitioning. Extensive experiments were conducted to get results along with the increasing size of real data
sets in order to estimate the scaling up and the speed up of the proposed algorithm and their properties. By
exploiting the properties of the MapReduce framework, a discussion of different ways efficiently applied

was introduced in terms of multiple inputs, replication of join, and partitioning.

String similarity joins have received considerable interest to design new algorithms called MGjoin with
the assistant of an inverted index. String similarity join is widely applied that aims to find all string pairs
based on user defined threshold and a given similarity function. In the paper of [25], two-step-filter-and-
refine was adopted by the proposed algorithm to identify similar string pairs adopted approach. The
proposed algorithm can generate candidate pairs based on inverted index and verify the candidate pairs
based on similarity join. On the other hand, the proposed algorithm could result in high verification cost
caused by poor filtering power or greater power of filtering computational cost. The proposed approach was
the first work to explore multiple prefix filtering method was performed based on different orders and a

parallel extension of the algorithm. Extensive experiments were conducted and have shown that the

97

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
proposed approach outperforms other approaches mainly state-of-the-art methods in terms of scalability and

efficiency.

In the paper of [6], a scalable string similarity join called MASSJOIN was presented based on
MapReduce. The proposed approach supports both character based similarity functions and set based
similarity functions. Existing partition based signature scheme was extended to perform set based similarity
functions, which generates key-value pairs by utilizing the signatures. Using the proposed approach, key-
value pairs were merged in order to reduce transmission cost and the number of key-value pairs. Therefore,
light-weight filter units were incorporated into key-value pairs in order to improve the performance and
omit the factors of increasing transmission cost. The significance of the proposed method was shown by
conducting extensive experiments; the results proved that the performance of the proposed method is better
than the state-of-the-art approaches.

D. KNN join

KNN join is useful tool mostly used in data mining applications and spatial multimedia databases. It can
produce K Nearest Neighbors (KNN) from one relation for every point in another relation. Performing KNN
joins efficiently is a challenging task since it involves both the join and NN search. Hence, the applications
continue to expand with the amount of data need to process. KNN execution on large data stored in
MapReduce is the main challenging and interesting task since it frequently needed in practice [30]. KNN
join is costly operation since NN search and join are expensive especially when datasets are in large multi-
dimensions. There has been little research on parallel KNN joins in large data since it incrementally
increases being exponential rate of datasets and a challenging task. On the other hand, there have been many
parallel algorithms in MapReduce for equi-joins, similarity joins, theta-joins, and spatial range joins. Hence,
many challenging and interesting problems were encountered regarding implementing KNN joins in
MapReduce [30]. K Nearest Neighbour KNN join is a primitive operation commonly implemented by
various applications of data mining. KNN join is designed to find k nearest neighbours from one dataset for
every object in another dataset. However, KNN is an expensive operation since it combines k nearest

neighbour query and join operation. Moreover, performing KNN join on centralized machine is difficult

98

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
with the increasing volume of data [18]. In many application domains, K Nearest Neighbours is one of the

popular methods used to achieve query point or a set of query points namely KNN-join. Many problems
have received much effort to resolve and to adopt changes to the database specially in stand-alone systems
and spatial databases. These problems may limit the efficiency of relational database management system
large data applications [28]. Typically, KNN join operation correlates a data object located in one dataset

with the corresponding k nearest neighbor located in the same or different dataset [29].

In the paper [30], a novel algorithm was proposed in order to implement parallel KNN joins on large data
using MapReduce demonstrated by Hadoop. The extensive experiments in the paper have demonstrated the
scalability, efficiency, and effectiveness of the proposed methods in large and synthetic datasets. KNN join
is costly operation since NN search and join are expensive especially when datasets are in large multi-
dimensions. In the work based on previous observation, a motivation pays an attention to explore the
problems associated with KNN joins execution on large data in MapReduce. First, Block Nested Loop Join
(BNLJ) was the basic approach was proposed and then it was improved using R-tree indices. The basic
approach does not scale well for large and multidimensional data due to the quadratic number of partitions
produced (number of dataset input blocks and reducers). MapReduce friendly was introduced to handle this
limitation. MapReduce friendly is an approximate algorithm dependent to multi-dimensional datasets
mapping into single dimension. For example, transforming KNN joins and space-filling curves are
converted to a set of single dimension range searches. The proposed algorithms presented in the work were
applied in MapReduce framework and the above issues raised in Hadoop were handled. The extensive
experiments conducted in the work have been implemented over large real datasets, and the results
confirmed good approximation quality which constantly outperforms the basic approach. Parallel KNN join
in MapReduce was studied in the work including proposing exact H-BRJ and H-zKNNj approximate

algorithms.

In the paper [18], an investigation to perform KNN join using MapReduce was presented. In map phase,
cluster objects are divided into groups, and then KNN join is performed on each group of objects
independently in reduce phase. Hence, the proposed mapping mechanism is designed to exploit distance-

filtering rules using Voronoi-diagram-based partitioning method in order to minimize computational and

99

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
shuffling costs. Two approximate algorithms were proposed to reduce number of replicas and then reduced

shuffling cost. The primary contributions of the paper are: presenting an implementation of KNN joins for
multi-dimensional and large volume datasets using MapReduce framework without any modification.
Additionally, in order to perform KNN join, an efficient mapping method is designed to divide objects into
groups; every group is processed by a reducer. The distances between data partitions are more closely
between groups and reduce number of replicas. Moreover, a cost model was developed to compute the
number of replicas resulted from shuffling process. The extensive experiments have been conducted
demonstrate the efficiency, robustness, and scalability of proposed methods.

In the paper of [28], a new method to achieve both KNN and KNN join in relational database was
integrated with further query conditions. The main purpose was to design an algorithm that has the least
impact and trivial changes to relational algorithms of database engine. The proposed algorithm uses SQL
operators that generate the best plan to be used by query optimizer without radical changes to the database.
The proposed approach is guaranteed to find the best-estimated KNN exactly in logarithmic cost in terms of
number of block accesses required using only a small number of random shifts for databases in any fixed
dimension. The extensive experiments have been conducted have demonstrated the efficiency and

practicality of the proposed approach mainly on large, real, and synthetic datasets.

In general, KNN-join is designed to handle static datasets but not frequently updated datasets, whereas
KNN-join is an expensive operation since it applied on high dimensional data. In the paper of [29], a novel
KNN join method was proposed namely KNN-join+ to provide an effective KNN results with no significant
changes to high dimensional datasets. Additionally, the proposed method guarantees to answer KNN queries
of the advanced applications with the least workload. The results have revealed the effectiveness of the
KNN-join+ to fast process high dimensional KNN join queries in both static and dynamic datasets. The
proposed approach outperforms the existing indexing techniques by providing the excellent and scalable

choice to handle dynamic dimensional data when dimensions are high especially in terms of sequential scan.

100

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
E. Top-k join

Many applications have used top-k similarity join to calculate the most top-k similar pairs among
different data records in a dataset. Typically, the time performance in top-k join is a challenging issue with
the increased applications that require processing vast datasets. However, traditional methods cannot easily
find the top-k pairs in such massive amounts of data [4].

In the paper [14], a new class of queries called top-k multiple-type integrated query (top-k MULTI) was
defined. The main role of top-k MULTI query is to treat several data types to find the relevance between the
object and the query. It can deal with many data types such as relational, spatial, and textual data types. The
main discrimination between traditional top-k query and top-k MULTI query is that the dependency of
component scores on the top-k MULTI query to find final scores. Hence, traditional top-k spatial keyword
query can be considered as an instance of top-k MULTI query. In the paper, an integration of the relational
data type into the traditional top-k spatial keyword query to create top-k spatial keyword-relational (SKR)
query to show the importance of top-k MULTI query. Additionally, an investigation of several approaches
to process top-k MULTI query (hybrid index and separate index approaches) and top-k SKR query was
presented. The key issue for top-k MULTI query processing is the Scalability due to the multiple data types
integrated in a query. In hybrid index approach, all indices for top-k MULTI query are built in an integrated
form creating multi-level indices. On the other hand, all individual indices are maintained independently in
separate index approach. A new query processing method was proposed for the top-k SKR query called
Separate SKR based on separate index approach. Therefore, two methods were presented based on hybrid
index approach to the top-k SKR query through expanding characteristic methods for the top-k spatial
keyword query. Finally, a comparison of the results of extensive experiments on top-k SKR query using real
datasets was performed to measure the efficiency and scalability of the methods from storage and query
performance perspectives. The results showed that Separate SKR was more efficient and scalable up to 13
times than extended hybrid index methods. Further, Separate SKR consumes storage space up to 3 times
less than extended hybrid index methods. In conclusion, separate index method can be easily extended to

encourage a new data type for top-k MULTI query.

101

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
The proposed algorithm in [4] namely RDD-based can perform top-k similarity join over large clusters

on high dimensional data sets. In general, RDD-based algorithm involves four stages that load multiple
high-dimensional records into HDFS to find the top-k closest pairs ordered based on Hamming distances to
perform global top-k pairs. An efficient distance function based on Locality Sensitive Hashing (LSH) was
developed to increase the process of top-k similarity join and comparisons. All pairs of LSH signatures are
split into partitions to minimize the amount of data during the RDD running time. Therefore, the proposed
algorithm is capable to calculate top-k closest pairs in parallelism by exploiting a serial computation
strategy. The results of experiments have revealed the scalability and effectiveness of RDD-based proposed
algorithm.

F. Graph similarity join

One of the advanced operations used in a wide range of academic, theoretical, real, and practical
applications is to identify clusters or close-knit communities in graphs. Practical algorithmic heuristics are
required to efficiently embrace the problem either the theoretical algorithm is computationally or inflexible
expensive. A set of significant challenges remain in implementing these heuristics to work for large real
world graphs such as irregular data access patterns, compound factors, scale of data, intensive operation

computation, and better approximation restriction [26].

In a distributed framework like MapReduce, performing graph-analysis is a challenging task. Many
approaches have been proposed for graph-analysis of algorithms, but they perform shuffling and storing
phases which increase the cost of high communication in MapReduce [8]. Graph similarity joins is very
important with the advent of massive graph-modelled data, since it is widely applied for many objectives

such as data cleaning [5].

In the paper [8], a new design pattern for a family of iterative graph algorithms for MapReduce
framework. The proposed method separates graph topology from the graph-analysis results. In each iteration
step, each MapReduce node existing in the graph participates in graph-analysis task and reads the same
partition of the graph locally. Each node also reads all the current analysis results from the distributed file

system. Using merge-join, the results of iterations are correlated to each graph partition locally, in addition

102

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
to generate and dump the new improved analysis results in the graph partition to HDFS. The algorithm

requires only one MapReduce job to perform pre-processing graph, and the actual analysis using repartition
requires one map-based MapReduce job. All partial results are contained in HDFS which stores the result of
map stage to perform merge-join between a partition of the graph and a global file. In detail, the method to
perform graph-analysis used parallel merge-join between the partition of graph and a global table containing
all partial results of each node. The map-based approach proposed in the paper outperforms the basic
approach since it can improve the performance of graph-analysis. At end, the approach can reduce the
communication cost and improve the performance by separating the graph topology from the graph-

analysis.

A novel MapReduce-based algorithm called pClust-mr was proposed in the paper of [26] for a popular
serial graph clustering. Thus, a novel application of the proposed method was developed to cluster
biological graphs more specifically to identify dense sub graphs from bipartite graphs. The proposed
algorithm uses pipelined MapReduce stages to implement a mixture of shuffling and sorting operations in
order to process the edges of the graph as an input. The results have revealed the linear scaling of the time

performance on small real world graphs.

In the paper of [5], graph similarity joins are considered under edit distance limitations in order to find
the pair of closest to each other lower than a specified threshold. With the use of MapReduce programming
model, a scalable algorithm was proposed namely MGSJoin, which applies filtering verification framework
to perform the most efficient graph similarity join. The main idea of the algorithm is to count the
overlapping graph signatures with filtered candidates. Spectral Bloom filters are introduced to minimize the
number of key-value pairs with the potential issue of too many key-value pairs in filtering phase. In
addition, multi-way join strategy was integrated to increase the efficiency of GED calculation for
verification based on MapReduce. The proposed algorithm is efficient and scalable with prove of extensive
empirical experiments demonstration. In the paper, the main focus is on graph similarity join mainly for
graph processing data. For example, suppose there are two graph object sets with distance threshold, and we
have to return graph similarity join including all pairs of graph objects contained in these two graphs in

terms of the lowest distances between them. In pre-processing of graph data mining, graph similarity join

103

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
has a wide range of applications. The main contribution of the work is to present MapReduce based graph

similarity join algorithm to redesign the current in-memory graph similarity join algorithm. Moreover,
large-scale graph datasets can be processed as a resulting baseline of the algorithm. More specifically,
Bloom filter capacity was proposed to minimize intermediate key-value pairs. Therefore, optimized
verification strategy was presented by multi-way join algorithm that can reduce number of rounds of
MapReduce. The results have demonstrated the efficiency and scalability of the proposed algorithm against
current solutions with the implementation in real publicly available datasets conducting in wide range of

applications.

G. Bloom join

A Bloom filter is a space-efficient probabilistic data structure; that is used to test whether an element is a
member of a set. A query returns either "possibly in set” or "not in set”. Elements can be added to the set,
but not removed. An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different
hash functions defined, each of which maps or hashes some set element to one of the m array positions with
a uniform random distribution. K is a constant, much smaller than m, which is proportional to the number of
elements to be added. To add an element, feed it to each of the k hash functions to get k array positions. Set

the bits at all these positions to one [19].

It reduces transmission cost. Bloom join with open source map-reduce framework of Hadoop improves
the performance of query optimization. The reduce side join applied bloom filters which is inexpensive than
map-side join [19]. There are two kinds of cases needing to be considered: two-way joins; that occurs
between two data sets, and multi-way joins; that occurs between more than two data sets, and it is

implemented by a sequence of two two-way joins [24].

Bloom filter: a type of the map-reduce join, the relation queue is used to decide which relations must be
further processed. The memory space needed to store a bloom filter is small compared to the amount of data
belonging to the set being tested. For improving the performance of query execution the reduce side join is
used with filtering on the map side which generates less 1/O cost, but there remain many non-joining tuples

after filtering [23]. The individual input records can be processed in parallel. Map function does not only tag

104

https://en.wikipedia.org/wiki/Probabilistic
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Map_(mathematics)

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
the input records but also filters them allowing only some of them to be part of the final map output, there is

no replication for the elements. The input to the map function is file split. The hash functions and reduces
the total processing cost. It reduces transmission cost, it reduces the amount of data transferred compared to
semi-join by utilizing the concept of bloom filters [19]. Two-way join needs less memory space than multi-
way join [32].

H. MRFA join

This algorithm, used to manage huge amount of data on large scale systems even for highly skewed data.
It is Map/Reduce Frequency Adaptive Join algorithm based on distributed histograms and randomized
redistribution approach. The support for fault tolerance and load balancing in Map-Reduce and Distributed
File System are preserved if possible: the inherent load imbalance due to repeated values must be handled
efficiently by the join algorithm and not by the Map/Reduce framework. Join computation in MRFA-Join
proceeds in two map-reduce jobs. First, one phase to compute distributed histograms and to create
randomized communication templates to redistribute only relevant data while avoiding the effect of data
skew, Map phase to generate a tagged “local histogram" for input relations then Reduce phase to create join

result global histogram index and randomized communication templates for relevant data [10].

Second, another phase is used to generate join output result by using communications templates carried
out in the previous step; Map phase to create a local hash table and to redistribute relevant data using
randomized communication templates, then Reduce phase to compute join result. The detailed information
provided by distributed histograms, allows to reduce communications costs to only relevant data while
guaranteeing perfect balancing processing due to the fact that, all the generated join tasks and buffered data
do not never exceed a user defined size using threshold frequencies. This makes the algorithm scalable and
outperforming existing map-reduce join algorithms which fail to handle skewed data whenever join tasks
cannot fit in the available node's memory. MRFA-Join can also benefit from Map/Reduce underlying load
balancing framework in heterogeneous or a multi-user environment since MRFA-Join is implemented

without any change in Map/Reduce framework. The overhead related to distributed histograms processing

105

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
remains very small compared to the gain in performance and communication costs since only relevant data

is processed or redistributed across the network [10].

MRFA-Join: a general join framework with filtering techniques in Map-Reduce. To avoid the effect of
repeated keys, Map user-defined function should generate distinct output keys even for records having the
same join attribute value. The load balance is perfect. To compute the join of two datasets, the input
relations are divided into blocks (splits) of data in distributed histograms and to buckets in a randomized key
redistribution approach. These splits are also replicated on several nodes for reliability. The detailed
information provided by these histograms, communication costs is reduced to only relevant data processing
due to the fact that all the generated join tasks and buffered data never exceed a user defined size. The
overhead related to distributed histograms processing remains very small compared to the gain in
performance and communication costs since only relevant data is processed or across the network. The

global redistribution cost is reduced to a minimum [10].

I. Intersection filter

The intersection filters can filter out disjoint elements between two datasets, there are three approaches
used to build the intersection filter. First approach is a pair of Bloom filters; specifying the set of
intersection by eliminating all disjoint elements between the input datasets. Then filter out the disjoint
elements in the input datasets by applying pair of bloom filters on the input datasets. Each tuple in one input
dataset is queried into the Bloom filter of the other input dataset by k hash functions. If its join key is a
member of the filter, the tuple containing this key will be returned because the key is a common member of
the two input datasets. Otherwise, the tuple will be removed from its dataset because its join key is a disjoint
member and this tuple is a non-joining tuple. This approach does not require the filters to have the same size
m and k hash functions. The second approach is Intersection of un-partitioned Bloom filters; this approach
is based on the idea that intersecting Bloom filters will produce a result filter called the intersection filter.
There is unfortunately little difference between the intersection filter and the intersection of Bloom filters, it

is used un-partitioned Bloom filter, only one intersection Bloom filter is used to remove most non-joining

106

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
tuples from the input datasets instead of using two filters as the first approach. It should use the un-

partitioned Bloom filters with the same size m and k hash functions [23].

The last approach is Intersection of partitioned Bloom filters; in this approach the partitioned Bloom
filters are used to create the intersection filter. The size of partitioned Bloom filters can be changed after
they are created. The filters may have different sizes but their partitions should have the same size. The
intersection filter is generated by intersecting pairs of partitions of two partitioned filters. The intersection
filter is generated by intersecting pairs of partitions of two partitioned filters. Two filters with 3 partitions
are pair wise intersected with the bit-wise and to produce the result filter including three 4-bit partitions.
This intersection filter represents the approximate intersection of the two datasets. If there exists at least one
partition of the result filter containing all m/k bits equal to O, the two input datasets are disjoint. So the join
processing can be finished without doing anything. The pre-processing step is written as a standard map
include two jobs running in parallel to process the input datasets (R and S) to build the intersection filter
[23].

Intersection filter: Three approaches proposed to compute the intersection filter; intersection to Bloom
filters, un-partitioned and Partitioned Bloom Filters. It filters out disjoint elements or non-joining tuples
from both datasets, not only on one input dataset [23]. The intersection filter uses hash functions to portion
the entire data sets. The memory space for first approach is small [11], but un-partition needs less memory
space than partition [23]. The first approach needs to maintain two filters while others require one filter on
nodes. A pre-processing enables a dramatic reduction in 1/0 and computational overhead. It produces much
less intermediate data. Join processing in intersection filter can minimize disk 1/0 and communication costs.
It is more effective through a cost-based comparison of join using different approaches. The preprocessing

increase total cost, but it is small compared with other algorithms [22].

J. Parallel join: semi join

There are three ways to implement the semi-join operation; a semi-join using bloom-filter, semi-join
using selection, an adaptive semi-join. The preprocessing in adaptive and selection semi-join is unigque

finding keys which are present in two datasets, and the relation queue is used to decide which relations must

107

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
be further processed in bloom filter [10]. Delete the tuples that will not be used in join by using the filter

will reduce the amount of data transferred over the network and the size of the dataset for the join. These
filtering techniques introduce some cost, the semi-join can improve the performance but the larger data sets
will decrease the performance. There is no replication on the data sets. The additional information about the
source of data will increase the data transferred. Memory space can be large depend on the size of the input

data sets, but it can improve performance and reduce the possibility of memory overflow [24].

When a large portion of the data set does not take part in the join, deleting of tuples that will not be used
in join significantly it will reduces the amount of data transferred over the network and the size of the
dataset for the join. These filtering techniques introduce some cost, so the semi-join can improve the
performance of the system only if the join key has low selectivity. There are three ways to implement the
semi-join operation [24]. Parallel join is one of the most expensive operations in terms both 1/0O and CPU

costs.
e A semi join using bloom filter

There are two jobs to perform the semi join. The Map phase and the Reduce phase. In the Map phase, the
keys from one set are selected and added to the Bloom-filter. In the Reduce phase combines the output from
Map phase into one. The second job filters only the output of the Map phase, increasing the size of the
bitmap will increase the accuracy on this approach, but will increase the amounts of memory space needed.
The advantage of this method is it’s the compactness. The performance of the semi-join using Bloom-filter
highly depends on the balance between the Bloom-filter sizes, which increases the time needed for its
reconstruction of the filter in the second job, the large size of the data set can decrease the performance of
the join [24].

e A semi join using selection

Semi-join with selection extracts unique keys and constructs a hash table. The hash table created in the
first step filters the second set. In the context of Map-Reduce, the semi-join is performed in two jobs.
Unique keys are selected during the Map phase of the first job and then they are combined into one file

during the Map phase. The second job consists of only the Map phase, which filters out the second set. The

108

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
semi-join using selection has some limitations. Hash table in memory, based on records of unique keys, can

be very large, and depends on the key size and the number of different keys [24].
e The adaptive semi join

The Adaptive semi join is performed in one job, but filters the original data on the flight during the join.
Similar to the Reduce-side join at the Map phase the keys from two data sets are read and values are set
equal to tags which identify the source of the keys. At the Reduce phase keys with different tags are
selected. The disadvantage of this approach is that additional information about the source of data is
transmitted over the network [24].

K. Filter join

This type of join focused on reducing the number of map output records that are not joined. The map
output records are replicated multiple times, so filtering out redundant records removes multiple copies of
the record in multi-way joins. To join number of datasets simultaneously, some datasets need to be
replicated. Replication may degrade the join performance, so it is important to reduce the number of
redundant records. There are some filtering techniques to multi-way joins. Multi-way joins can be classified
into two types: common attribute joins and distinct attribute joins. A common attribute join combines
datasets based on one or more shared attributes, whereas some relations do not have join attributes in a
distinct attribute join [16].

e Common attribute joins

The entire input datasets share joins attributes. The input records do not need to be replicated and they
can be processed in a similar manner to two-way joins. A set of filters is created and probed in turn
depending on the processing order of the input datasets [16]. There is no need to duplicate the entire
datasets, the first data set used to make a set of filters to the next dataset. The cost depends on the number of
input records, the ratio of the joined records, and the false positive rate of the filters; it is efficient when
small portions of records participate in joins. There is no partitioning for input dataset. It needs a small

memory space [16].

109

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.Mecsj.com
e Distinct attribute joins
Distinct attribute joins required the replication of some input datasets. The star-dim pattern delivered the
best performance, chain join has the least performance between them. There are some equations can be used
to select the processing order of the input data sets, and to estimate the join cost, because the processing
order must be selected carefully because it affects the join cost, but there may be a large search space if the
numbers of reducers and the input datasets are large, cost for star-fact is less than chain join but more than
star-dim. The replication of input records for their corresponding reducers can be implemented in a similar
manner to the data partitioning. The input datasets may not have some join attributes. Thus, some of the
datasets with missing attributes need to be replicated because their records may be joined to the input
records of other datasets with any values of the missing attributes. The filters can be applied in three
patterns: chain, star-fact, and star-dim [16].

e Chain

The chain pattern creates filters similar to common attribute joins, except that each set of filters is created
for a different join attribute [16].

e Star fact

The star-fact pattern creates filters using the dataset with both join attributes and uses the filters to

process the other datasets [16].
e Star-Dim
The star-dim pattern creates filters using the datasets with missing join attributes and uses the filters to

process the other dataset [16].

L. SIMR: parallelizing spatial join

Spatial join merges two spatial data sets with a spatial relationship between the objects. Spatial join is
commonly used in applications such as spatial robotics, DBMS, and game programming. Given two sets of

multidimensional objects in Euclidean space, a spatial join query can discover all pairs of objects satisfying

110

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
a given spatial relation, such as intersection. The input dataset is preprocessed to extract some key attributes.

The input datasets are replicated to several partitions at Map stage. The filter is used to remove the tuples
that cannot be parts of the result. This algorithm depends on good load balancing strategies. The grid
partitioning method is used to dived the random data among n processors, the performance of SIMR
improves by the increasing of node number, it’s performance is high compared with PPBSM algorithm.
Reduce task number and memory size of each node is increased to make the memory size large enough to
filter and refine all in memory without writing operations so it needs large memory space. This method
could only proceed when Reduce stage has finished completely, so its cost is high [33].

M. Massively parallel sort merge (MPSM) joins

MPSM join is a new sort-based parallel join method scaling almost linearly with the number of clusters.
Therefore, this sort-based join outperforms hash-based parallel join algorithms on modern multi-core
servers. Sort-based algorithms formed the basis for multi-core optimization in recent proposed approaches

[1]. There are three type of this algorithm:
e B-MPSM algorithm

It is the basic form of MPSM algorithm, which is unaffected by any kind of skew. It allows some
similarity to fragment and replicate distributed join algorithms. It only replicates merge join scans of the

threads/cores but does not duplicate any data [1].
e P-MPSM algorithm
It is an improved MPSM version based on range partitioning of the input by join keys [1].
e D-MPSM algorithm

The MPSM can be effectively modified to non-main memory scenarios, in which intermediate data must
be written to disk [1].

B-MPSM starts by generating sorted runs in parallel. There is no data duplication but instead data is

partitioned into equal sizes. B-MPSM performs a number of worker threads of sort-merge joins in parallel.

111

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
At result, it a large memory space is needed. P-MPSM uses join keys to split the input data sets. D-MPSM

uses a small part of memory to store the data during join processing so it is a RAM-constrained version that
spools runs to disk. The performance depends on the number of threads running in parallel. MPSM adds
only very little overhead to the overall join processing. The algorithms take advantage of massive thread
parallelism, fast inter-processor communication through local memory. Memory space needed for B-MPSM
and P-MPSM are large but it is small for D-MPSM [1].

After deeply reviewed papers and works in the field of MapReduce join algorithms, we are motivated to
make a comparison between these investigated papers. The comparison will be based on the following
criteria (technical aspects of join algorithms): pre-processing, filtering, partitioning, replication, load
balancing, performance, memory space, communication cost, query processing, and query optimization.
Compared information is displayed in Table 1. It shows different MapReduce join algorithms from literature

analyzed from the above-mentioned perspectives.

We classify MapReduce join algorithms into several categories including Multi way join, Equi-join,
Similarity join, and Bloom join filter. Further, Multi way join algorithms are also divided into: two-way or
three-way; replicated join, and star join, or theta-join. In Equi-join, the algorithms are also subdivided into:
repartition join, map-only join, replication side, and semi join. Moreover, similarity join algorithms are
classified into: top-k, KNN, string similarity, and graph similarity. Lastly but not least, Bloom join filter is

either intersection filter or parallel join

112

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MECSj.com

113

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MECSj.com

114

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com

RESULTS AND DISCUSSION

In terms of theta-join, we investigated four of the most recent papers in MapReduce framework: M-
Bucket-Theta [13], M-Bucket [21], MRJ [34], and Random algorithm SEJ [31]. M-Bucket-Theta in [13] a
binary theta-join and pre-processing clustering algorithm were introduced. In addition, load imbalance was
considered to decrease the communication cost and the maximum load of a reducer. The proposed algorithm
in the paper is based on 1-Bucket-Theta that requires minimal statistical information and examines all tuples
pairs. The results confirmed that the proposed partitioning algorithm provides up to 59% better time
performance. However, [31] still perform join performance less than M-Bucket [21] that implements theta-
join as a single MapReduce job without changing MapReduce framework. It implements memory-aware
approach, minimizes total cost, and has better performance. Another examined paper was MRJ [34] that
provides a solution using only single MapReduce job for efficient execution of chain-typed theta-join near
optimal time efficiency. The method can achieve substantial improvement of the join processing efficiency
compared to other adopted solutions. A Hilbert curve based space partition method was proposed in the
paper to reduce the volume of copying data over network and to adjust the reduce tasks workload. The last
approach is Random algorithm SEJ [31] that performs efficient multi-way joins using one MapReduce job
rather than cascades of two-way joins due to the use of largrangian method to reduce communication cost

and to increase performance.

In terms of KNN join, we investigated four of the most recent papers in MapReduce framework: PGBJ
[18], kNNJoin+ self-join [29], H-zkNNJ [30], and zy-kNN [28]. The proposed method in [18] was designed
based on mapping mechanism that exploits distance-filtering rules using Voronoi-diagram-based
partitioning method in order to minimize computational and shuffling costs. PGBJ achieved poor
performance due to the large memory consumption. However, KNNJoin+ self-join proposed in [29] is more
effective that results with no significant changes to high dimensional datasets and with the least workload. ,
kNNJoin+ outperforms other indexing techniques by providing the excellent and scalable choice to handle
dynamic dimensional data when dimensions are high. Another examined approach is H-zkNNJ in [30] that

proposed Block Nested Loop Join (BNLJ) for scalability requiring only linear number of blocks, dataset

115

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
input and reducers. The problems and issued addressed in the study are: the issue of reducing the amount of

communication occurred between Map and Reduce phases, the issue of performing random shifts in
MapReduce, and the issue of designing a good partition over single dimensional z-values for joins purpose.
In [28], zx-kKNN uses SQL operators that generate the best plan to query optimizer without radical changes
to the database. zy-kNN approach is guaranteed to find the best-estimated KNN exactly in logarithmic cost

in terms of number of block accesses.

In terms of top-k join, we investigated two of the most recent papers in MapReduce framework: Top-k
MULT]I query [14] and RDD-based algorithm [4]. First, Top-k MULTI query in [14] performed efficient
and scalable storage and query performance using Separate SKR. Further, Separate SKR consumes storage
space up to 3 times less than extended hybrid index methods. However, RDD-based algorithm proposed in
[4] is based on Hamming distances and distance function based on Locality Sensitive Hashing. RDD-based

algorithm can perform top-k similarity join over large clusters on high dimensional data sets.

In terms of Graph similarity join, we investigated three of the most recent papers in MapReduce
framework: MGSJoin [5], pClust-mr [26], and Map-based graph analysis [8]. MGS Join in [5] applies
filtering verification framework in graph similarity join mainly for graph processing data. MGSJ join was
presented to redesign the current in-memory graph similarity join algorithm and to use the capacity of
Bloom filter capacity to minimize intermediate key-value pairs. Therefore, it used an optimized verification
strategy by multi-way join algorithm to reduce number of rounds of MapReduce which results in more
efficient and scalable algorithm against other solutions. PClust-mr in [26] was proposed for serial graph
clustering using pipelined MapReduce stages to implement a mixture of shuffling and sorting operations.
PClust-mr results in linear scaling of the time performance on small real world graphs but it still needs to be
improved for large graphs. Map-based graph analysis in [8] requires only one MapReduce job to perform
pre-processing graph. It uses parallel merge-join to generate and dump the new improved analysis results in
the graph partition to HDFS. It outperforms other approaches due to the improved performance of graph-

analysis and the reduced communication cost by separating the graph topology from the graph-analysis.

116

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
In terms of String similarity join, we investigated three of the most recent papers in MapReduce

framework: MASSJOIN [6], PPJoin+ [27], and MGJoin [25]. MASSJOIN in [6] supports both character
based similarity functions and set based similarity functions which generates key-value pairs by utilizing the
signatures. MASSJOIN can reduce transmission cost and the number of key-value pairs using lightweight
filter units to improve the performance better than others and to omit the factors of increasing transmission
cost. PPJoin+ in [27] is a three-stage approach and an efficient data-node partitioning technique proposed to
minimize the need for replication and to balance the workload for end-to-end set-similarity joins. However,
PPJoin+ still does not fit into memory with the increasing size of real data sets even with the use of self-join
and R-S joins to control the amount of data-nodes in main memory. MGJoin in [25] results in high
verification cost caused by poor filtering power or greater power of filtering computational cost. MGJoin
adopted two-step-filter-and-refine, which was the first work to explore multiple prefix filtering method
based on different orders and a parallel extension of the algorithm.

In terms of Multi-way join, we investigated two of the most recent papers in MapReduce framework: m-
way: S2, P2, and PM [20] and three-way join [12]. M-way in [20] uses three types of algorithms were
implemented: S2, P2, and PM. M-way join can reduce the number of binary multiplications by taking the
advantage of multi-way join operation. It has demonstrated the capacity of the parallel m-way join to
enhance the process of matrix multiplication differs than the rest of papers. It also can balance the intra-
operation parallelism and inter-parallelism approaches because of using the raw key implementation and
parallel two-way join algorithm. Three-way join in [12] utilizes distributed computation of joins using
clusters of many machines for efficient graph algorithms. It uses a cascade of two-way joins if the join result
needs to be summarized or aggregated to get more efficiency. However, the result of the join should be

preferably cascaded of two-way joins to reduce the communication cost.

In terms of Equi-join, we investigated only one of the most recent papers in MapReduce framework:
STRSM [3]. It studied the impact of memory footprint for each join algorithm on the number of parallel
queries to improve query response time. It allows system implementers and query optimizer to use the

optimal join algorithm and to optimize complex query pipelines with multiple joins. However, hash-based

117

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
join algorithm performs faster and consumes smaller memory footprint compared to sort-based algorithms

in most cases.

Two-way join is less efficient than the improved repartition join especially if the size of the relation is
small. Therefore, two-way join needs additional Map-Reduce rounds to build the bloom-filters. As a result,
it is more efficient than improved repartition join. However, when the size of the relation grows to over 50
million records, the bloom-filters can filter a lot of useless data to save network overhead and processing
overhead. The bloom-filter can be used to filter useless data and eventually improve the efficiency of the

two-way join and multi-way joins [24].

Bloom Filter, which works better than Semi-Join, reduces amount of data transfer between different sites
and performs efficient query processing. Bloom join with open source map-reduce framework of Hadoop
improves the performance of query optimization [19].

MRFA-Join algorithm ensures of perfect balancing properties during all stages of join computation [10].
The intersection filter has an extra cost for the preprocessing step, but its efficiency in space-saving and
filtering often outweighs these shortcomings [23]. However, its performance is least compared with other

join algorithms like bloom join and Reduce-Side-Join [22].

The un-partitioned intersection filters seem more efficient than the joins using the partitioned intersection
filter because of their filtering performance. However, the partitioned intersection filter can easily discover

disjoint datasets on a join key column and stop the join processing [22].

Common attribute filter joins and distinct attribute filter joins significantly outperformed the repartition
join on the other hand, MFR-Join outperforms them and the semi-join with bloom filters [16]. Moreover,
common attribute filter joins and distinct attribute filter joins improve the execution time significantly by

reducing the amount of intermediate results when small portions of input datasets are joined [16].

The performance of SJIMR algorithm was compared with the performance of PPBSM algorithm; the
performance of PPBSM is less than the performance of SIMR algorithm. On the other hand, SIMR

algorithm uses a technique called reference tile method, which is an improvement to reference point

118

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
method. Instead of using a duplication and elimination operator at the end of SIMR, it is better to avoid

producing duplicates online per reduce job. As a result, the filter step in [33] was modified through a simple

test applied during the intersection’s checking of rectangles. The results are illustrated in Table 1.

I1I. CONCLUSION AND FUTURE WORK

We have produced big effort to create this survey that mainly specialized to MapReduce programming
model and software framework. MapReduce is intended to facilitate and simplify the processing of massive
amount of data through large clusters of commodity hardware in parallelism, reliable, and fault-tolerant
manner. We summarized a number of join algorithms in introduced under Map-Reduce framework, and we
compared between them based on a set of criteria. Per join type, some of the investigated approaches
showed better performance than other approaches. Several join algorithms have presented disparate results
in terms of pre-processing, filtering, partitioning, replication, load balancing, performance, memory space,
and total cost. The performance of each algorithm depends on the size and duplicates of the input data sets.
We can say that the preprocessing step can improve the performance but it requires additional cost such as
incorporating filtering techniques. However, we cannot conclude that there is a specific algorithm has the

best and perfect performance of the solution.

We will extend this research again by incorporating other comparison criteria and involving other
recently published papers. We also can consider other join types that have not explored yet such as block-
nested loop join, hash join, symmetric hash join, natural-join, and self-Join. In addition, we have an
opportunity to follow-up enhancements shown by the previous algorithms. This survey is ongoing; it has a
chance to be continuously up to date according to the improvements and developments to MapReduce
framework as well as the enhancement of distributed and parallel computing based on MapReduce
paradigm. One important opportunity for future work is to benefit every researcher interested in this area of
research in order to resolve some encountered problems and shortcomings outlined in this paper.
Conversely, this research acts as an initiation point to enhance being proposed algorithms in the field of big

data analysis techniques based on MapReduce.

119

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
Acknowledgment

We specially thank Dr. Al-badarneh, Amer for his assistance and comments that greatly improved this
work, and our parents for their support.

References

11 Albutiu, M. C., Kemper, A., & Neumann, T. (2012). Massively parallel sort-merge joins in main
memory multi-core database systems. Proceedings of the VLDB Endowment, 5(10), 1064-1075.

21 Andreas, C. (2010). Designing a Parallel Query Engine over Map/Reduce (Doctoral dissertation,
Master’s thesis, Informatics MSc, School of Informatics, University of Edinburgh).

3] Blanas, S., & Patel, J. M. (2013, October). Memory footprint matters: efficient equi-join algorithms for
main memory data processing. In Proceedings of the 4th annual Symposium on Cloud Computing (p.

19). ACM.
4] Chen, D., Shen, C., Feng, J., & Le, J. (2015). An Efficient Parallel Top-k Similarity Join for Massive

Multidimensional Data Using Spark. International Journal of Database Theory and Application, 8(3),
57-68.

5] Chen, Y., Zhao, X., Xiao, C., Zhang, W., & Tang, J. (2014). Efficient and Scalable Graph Similarity
Joins in MapReduce. The Scientific World Journal, 2014.

] Deng, D., Li, G., Hao, S., Wang, J., & Feng, J. (2014, March). Massjoin: A mapreduce-based method
for scalable string similarity joins. In Data Engineering (ICDE), 2014 IEEE 30th International
Conference on (pp. 340-351). IEEE.

1 Doulkeridis, C., & Ngrvag, K. (2014). A survey of large-scale analytical query processing in
MapReduce. The VLDB Journal, 23(3), 355-380.

81 Elmasri, R., & Navathe, S. (2009). Fundamentals of database systems. A B[e 4 A .

] Gupta, U., & Fegaras, L. (2013, October). Map-based graph analysis on MapReduce. In Big Data, 2013
IEEE International Conference on (pp. 24-30). IEEE.

120

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

WWW.MeCsj.com
Hassan, M. A. H., Bamha, M., & Loulergue, F. (2014). Handling data-skew effects in join operations

using mapreduce. Procedia Computer Science, 29, 145-158.

Jeffrey, M. C., & Steffan, J. G. (2011, June). Understanding Bloom filter intersection for lazy address-
set disambiguation. In Proceedings of the twenty-third annual ACM symposium on Parallelism in
algorithms and architectures (pp. 345-354). ACM.

Kimmett, B., Thomo, A., & Venkatesh, S. (2014, July). Three-way joins on mapreduce: An
experimental study. In Information, Intelligence, Systems and Applications, IISA 2014, The 5th
International Conference on (pp. 227-232). IEEE.

Koumarelas, I. K., Naskos, A., & Gounaris, A. (2014, March). Binary Theta-Joins using MapReduce:
Efficiency Analysis and Improvements. In EDBT/ICDT Workshops (pp. 6-9).

Kwon, H. Y., & Whang, K. Y. (2015). Scalable and efficient processing of top-k multiple-type
integrated queries. World Wide Web, 1-25. [15] Lee, K. H., Lee, Y. J., Choi, H., Chung, Y. D., & Moon,
B. (2012). Parallel data processing with MapReduce: a survey. AcM siIGMoD Record, 40(4), 11-20.

Lee, T., Im, D. H., Kim, H., & Kim, H. J. (2014). Application of filters to multiway joins in mapreduce.
Mathematical Problems in Engineering, 2014.

Lee, T., Im, D. H., Kim, H., & Kim, H. J. (2014). Application of filters to multiway joins in mapreduce.
Mathematical Problems in Engineering, 2014.

Li, F., Ooi, B. C., Ozsu, M. T., & Wu, S. (2014). Distributed data management using MapReduce. ACM
Computing Surveys (CSUR), 46(3), 31.

Lu, W., Shen, Y., Chen, S., & Ooi, B. C. (2012). Efficient processing of k nearest neighbor joins using
mapreduce. Proceedings of the VLDB Endowment, 5(10), 1016-1027.

Mahajan, S. M., & Jadhav, M. V. P. BLOOM JOIN FINE-TUNES DISTRIBUTED QUERY IN
HADOOP ENVIRONMENT.

Myung, J., & Lee, S. G. (2012, February). Matrix chain multiplication via multi-way join algorithms in
MapReduce. In Proceedings of the 6th International Conference on Ubiquitous Information

Management and Communication (p. 53). ACM.

121

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
1211 Okcan, A., & Riedewald, M. (2011, June). Processing theta-joins using MapReduce. In Proceedings of

the 2011 ACM SIGMOD International Conference on Management of data (pp. 949-960). ACM.

1221 Phan, T. C. (2014). Optimization for big joins and recursive query evaluation using intersection and
difference filters in MapReduce (Doctoral dissertation, Université Blaise Pascal-Clermont-Ferrand I1).

1231 Phan, T. C., d'Orazio, L., & Rigaux, P. (2013, August). Toward intersection filter-based optimization for
joins in mapreduce. In Proceedings of the 2Nd International Workshop on Cloud Intelligence (p. 2).
ACM.

241 Pigul, A. (2012). Comparative Study Parallel Join Algorithms for MapReduce environment. Tpymbt
NHuctutyTa cuctemuoro nporpammuposanus PAH, 23.

12s]1 Rong, C., Lu, W., Wang, X., Du, X., Chen, Y., & Tung, A. K. (2013). Efficient and scalable processing
of string similarity join. Knowledge and Data Engineering, IEEE Transactions on, 25(10), 2217-2230.

126] Rytsareva, |., & Kalyanaraman, A. (2012). An efficient MapReduce algorighm for parallelizing large-
scale graph clustering.

1271 Vernica, R., Carey, M. J., & Li, C. (2010, June). Efficient parallel set-similarity joins using MapReduce.
In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (pp. 495-
506). ACM.

28] Yao, B., Li, F., & Kumar, P. (2010, March). K nearest neighbor queries and knn-joins in large relational
databases (almost) for free. In Data engineering (ICDE), 2010 IEEE 26th international conference on
(pp. 4-15). IEEE.

9] Yu, C., Zhang, R., Huang, Y., & Xiong, H. (2010). High-dimensional knn joins with incremental
updates. Geoinformatica, 14(1), 55-82.

Bo] Zhang, C., Li, F., & Jestes, J. (2012, March). Efficient parallel KNN joins for large data in MapReduce.
In Proceedings of the 15th International Conference on Extending Database Technology (pp. 38-49).
ACM.

811 Zhang, C., Li, J., & Wu, L. (2013). Optimizing Theta-Joins in a MapReduce Environment. International
Journal of Database Theory and Application, 6(4), 91-107.

122

Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

ISSN : 2616-9185

WWW.MeCsj.com
821 Zhang, C., Wu, L., & Li, J. (2013). Efficient processing distributed joins with bloomfilter using

mapreduce. Int J Grid Distrib Comput, 6(3), 43-58.

@3] Zhang, S., Han, J., Liu, Z., Wang, K., & Xu, Z. (2009, August). Sjmr: Parallelizing spatial join with
mapreduce on clusters. In Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International
Conference on (pp. 1-8). IEEE.

34] Zhang, X., Chen, L., & Wang, M. (2012). Efficient multi-way theta-join processing using mapreduce.
Proceedings of the VLDB Endowment, 5(11), 1184-1195.

123

	I. Introduction
	A. Query optimization

	I.
	II. Background/Literature review
	A. Multi way join
	 Replicated join
	 Star join
	 Theta join
	B. Equi join
	 Repartition join
	 Map-only join
	 Replication side join
	 Semi join
	C. Similarity join
	D. kNN join
	E. Top-k join
	F. Graph similarity join
	G. Bloom join
	H. MRFA join
	I. Intersection filter
	J. Parallel join: semi join
	 A semi join using bloom filter
	 A semi join using selection
	 The adaptive semi join
	K. Filter join
	 Common attribute joins
	 Distinct attribute joins
	 Chain
	 Star fact
	 Star-Dim
	L. SJMR: parallelizing spatial join
	M. Massively parallel sort merge (MPSM) joins
	 B-MPSM algorithm
	 P-MPSM algorithm
	 D-MPSM algorithm
	Acknowledgment
	References

