
 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 1

A comparison of most recent MapReduce joins algorithms

Majeed Bander Al-Rewili
Progarming Engineer

E-mail: Maj_Rewili@hotmail.com

Abstract:

In this interesting line of research, an attempt has been to overview different parallel processing

platforms that implement MapReduce jobs. This survey provides a wide-ranging analysis of work and

publications related to MapReduce framework to data, and it also can be used as a basis for further research

and examination. The scope of this survey is focused on pre-processing, pre-filtering, partitioning,

replication, load balancing, performance, memory space, communication cost, and query processing and

optimization aspects in the light of big data analysis in MapReduce. Moreover, a set of efficient optimized

and improved approaches in the context of analytical query processing and optimizing using MapReduce. It

provides an added value to current research published yearly by introducing a comprehensive classification

of recently presented papers in the era of join types using MapReduce. From data-centric perspective, the

main topic of this approach is intended to highlight the importance of traditional problems of data

management and analysis in the regard of efficient big data processing and analysis approaches.

Keywords: MapReduce, Hadoop, join types, multi-way join, theta-join, KNN join, top-k join, graph

similarity join, semi join, filter join, bloom join, intersection join.

I. INTRODUCTION

There are many systems have been developed primarily to adopt big data analysis such as Yahoo’s

PNUTS, Twitter Storm, LinkedIn’s Kafka, and especially Google’s MapReduce. MapReduce, because of its

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 2

simplicity, transformed the receiving of big data and large-scale processing; it becomes the most common

framework used for vast datasets analysis based on machine learning techniques. Apache Hadoop is an open

source which implements MapReduce framework and it has performed high popularity in both academia

and industry due to its widespread usage [7].

MapReduce implementation in DBMS supports a set of functions: storage management, data

partitioning, data compression, storage management, query optimization, and indexing. Hadoop DB presents

the strategies of partitioning and indexing for parallel DBMSs based on MapReduce framework. Hadoop

DB architecture includes three layers: top layer, middle layer, and bottom layer. In top layer, Hive is

extended to convert queries to MapReduce jobs. In middle layer, MapReduce infrastructure and HDFS are

implemented including fault tolerance, shuffling data between nodes, and caching intermediate files. In

bottom layer, there are a set of computing nodes distributed in side layer to run individual instance of

PostgresSQL DBMS and to store data [17].

Hadoop is an open source implementation of MapReduce which is the most common framework

increasingly used by many companies including huge number of users. Hadoop is mainly compound of two

parts: Hadoop Distributed File System (HDFS) and MapReduce to achieve distributed processing. Hadoop

contains various servers: Job-Tracker and Task-Tracker to perform MapReduce, and Name-Node,

Secondary Name-Node, and Data-Node to manage HDFS. MapReduce supports parallel processing of vast

datasets; it includes two functions: Map function and Reduce function. Any job which has to be performed

by MapReduce should go through these two phases. Map function is also called mapper which takes input

including key-value pairs. It also performs some computational processes on the input to produce

intermediary outputs formed also with key-value pairs. While Reduce function, which is also called reducer

processes the obtained results from Map function; the data are shuffled to perform reduce phase. Shuffle

phase sometimes takes time, network bandwidth, and other resources more than two main functions, Map

and Reduce [7].

Data is stored by default in HDFS which consists of several Data-Nodes to store data. It also consists of

Name-Node, a master node, to monitor Data-Nodes and maintain all Meta data. Data in HDFS is separated

into multiple chunks that contain different Data-Nodes and equivalent in size. Two system processes are

established, Job-Tracker and Task-Tracker, in MapReduce runtime. Job-Tracker is responsible to split a job

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 3

into two phases: map and reduce that the user defines. It also arranges all tasks among different Task-

Trackers. After that, Task-Tracker accepts the job and starts to process tasks assigned to map reduce

functions. Task-Tracker will take a data chunk defined by Job-Tracker and apply map task on. Once every

map task completes, all intermediate results are grouped into reduce tasks in order to obtain the results [18].

HDFS is a distributed file designed to store big data files in a stream data form with access pattern. It is

designed to recognize and respond individual machines failures since it is potential to work on commercial

hardware. The main workflow is as follows: data are copied to HDFS to perform MapReduce, and then

results are also copied from HDFS. So HDFS is usually not the key storage of data. This typical workflow

scenario of using HDFS obeys to an access model called write-once read-many. In this model, random

access to file parts is essentially costly in comparison with sequential access since HDFS is optimized for

streaming access of large files. Files are possible to be only appended; there is no file update support [7].

A. Query optimization

Query plan optimization using many plan generations and selection algorithms can be performed and

developed to find optimal plan for relational DBMSs. In addition, MapReduce system can further improve

these optimization algorithms. Query optimization algorithms and more elaborate algorithms are needed

since MapReduce jobs usually run longer than relational queries. Additionally, query execution time and

query optimization time should be balanced to run fast relational optimization algorithms. To reduce the

plan search space and to pipeline data between operators, only left deep plans are typically considered in

most relational DBMSs. Query execution is more significant for efficiency so there will be no pipeline

between the original MapReduce and the operator [17].

In this paper, we considered a set of papers related to MapReduce published early in main database

journals and conferences from 2009 to 2016. We attempt to analyze the limitations of existing surveys’

approaches related to MapReduce in order to outline their shortcomings and to make a comparison between

them. In addition, we aim to define major encountered problems in terms of MapReduce tasks processing in

order to provide categorization of entire work and research comprehensively according to the addressed

problems. The main contribution of this paper is to present a powerful citation of current problems and their

potential solving techniques and to talk about future work to improve novel systems in terms of MapReduce

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 4

processing tasks. In our survey, we focus on the improvements of MapReduce framework by reviewing the

primary MapReduce framework and its multiple implementations. Different approaches have been

implemented using MapReduce framework since it has no real specification of the way of implementing

components. Therefore, we compare the design and features of different well known implementations of

MapReduce framework.

II. BACKGROUND/LITERATURE REVIEW

In the following section, an overview is introduced to provide many techniques and methods presented in

the literature in terms of MapReduce performance improvement. We organize the categorized approaches of

MapReduce improvement in a specified classification based on the introduced improvement.

Many purposes have been realized to improve the usefulness of database operators via MapReduce

algorithms especially in intensive applications. In MapReduce framework, Map function is able to easily

support simple operators such as select and project, but it cannot achieve theta-join, equi-join, multi-way

join, and similarity join [17].

A. Multi way join

Multi-way join is more complex join implementation than binary join. It can be implemented either using

only one MapReduce job which is called replicated join or using multiple MapReduce jobs (one job for

every join). Multiple MapReduce jobs are used to execute multi-way join by achieving a series of equi-

joins. Every single equi-join is performed by one MapReduce job, and every result of one MapReduce job

passes to next MapReduce job as input. Usually, several join orders can lead to different performance based

on different query plans that can be generated [17].

In the paper of [20], a multi-way join was presented to compute a set of matrix multiplications among

several relations. The proposed algorithm can reduce the number of binary multiplications by taking the

advantage of multi-way join operation. The proposed algorithm was implemented based on MapReduce

framework, which provides us an ability to achieve the scalability of large matrix multiplication. The paper

took a different perspective differs than several papers have investigated matrix multiplication using

MapReduce. In the paper, the concept of parallelism was employed in the expansion of the problem from

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 5

binary multiplication to n-ary multiplication of the whole equation. The multiplication was translated into a

join operation in database systems to facilitate the efficiency of the matrices storage and to easier matrices

multiplication of the most common matrices in graph data. Three types of algorithms were implemented:

S2, P2, and PM. The experiments were processed on real world graph data in the paper have demonstrated

the capacity of the parallel m-way join to enhance the process of matrix multiplication. Because of using the

raw key implementation, the parallel two-way join algorithm can balance the intra-operation parallelism and

inter-parallelism approaches.

In the paper of [12], three-way joins on MapReduce was studied in order to utilize distributed

computation of joins using clusters of many machines for efficient graph algorithms. A state-of-the-art

MapReduce multi-way join algorithm was shown in the paper to provide the appropriateness of using it with

huge datasets. The aggregation step can be integrated into a cascade of two-way joins if the join result needs

to be summarized or aggregated to get more efficiency. In the paper, the focus was on three-way joins for

MapReduce specially for social networks analysis. However, the result of the join should be preferably

cascaded of two-way joins to reduce the communication cost. Multi-way join algorithms are divided into

three sub-types including Replicated join, Star join, and Theta-join as shown as follows:

 Replicated join

Replicated join is performed by as a single MapReduce job to perform multi-way joins. There is a special

case of replicated join called star join that perform all join conditions on the same attribute or a set of same

attributes [17].

 Star join

Star join can be implemented by one MapReduce job by setting the map output key to be the join

attribute and deploying load balanced if needed [17].

 Theta join

Theta-join or θ-join is a join operator contains one of the following join conditions: (<, >, =, <=, >=, or

!=) [17]. In real practices, more specifically in complex relations, multi-way theta-join queries are powerful.

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 6

The most challenging task is to minimize the total processing time span through the best schedule sequence

of execution of MapReduce jobs by mapping multi-way theta-join query [34].

In the paper [21], a proposed algorithm to implement theta-join as a single MapReduce job was

presented. The implementation was achieved without changing MapReduce framework by constructing

proper functions of Map and Reduce. The goal of the paper is to minimize job completion time. To do this,

an appropriate join matrix-to-reducer mappings was used to define a great diversity of join implementations.

An algorithm was proposed called 1-Bucket-Theta that uses matrix-to-reducer mappings on any join which

has output significantly fraction of cross product and on cross product especially. Moreover, even though

the proposed algorithm, 1-Bucket-Theta, is slower than other faster algorithms, other algorithms cannot be

identified as usable unless knowing the join result in advance or performing expensive an analysis. The

proposed algorithm consists of M-Bucket class of algorithms that can exclude large regions of join matrix

and reduce input-related costs to improve running time for any theta-join. The proposed approach does not

need to change MapReduce model; it supports any theta-join in a single MapReduce job. Indeed, the

proposed algorithm can be integrated with high level programming languages on top of MapReduce. There

are better algorithms that 1-Bucket-Theta for selective join conditions. On the other hand, these algorithms

include an essential fraction of the join matrix cells that are unassigned to any reducer. In practice, finding

enough of such matrix cells can be impossible or computationally very expensive due to complex user-

defined join conditions and insufficient input statistics. Due to the lack of proof that better matrix-to-reducer

mapping does not miss any output tuple, we cannot use it.

Extending current solutions from traditional distributed and parallel databases for multi-way theta-join

queries is relatively difficult to fit huge data volumes. In the paper of [34], a study was conducted from cost

effective perspective of the problem of efficient processing of multi-way theta-join queries based on

MapReduce identification and scheduling. Efficient processing of multi-way theta-join has not never been

fully explores although of many works have been done using key-value pair-based programming model to

support join operations. The most challenging task is to minimize the total processing time span through the

best schedule sequence of execution of MapReduce jobs by mapping multi-way theta-join query. The main

solution provided in the paper includes two parts: using only single MapReduce job for efficient execution

of chain-typed theta-join, and how to execute single MapReduce job or a set of MapReduce jobs in a certain

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 7

order and the corresponding cost metrics. The method can achieve substantial improvement of the join

processing efficiency compared to other widely adopted solutions. In fact, the work introduced for the first

time the exploration and evaluation of multi-way theta-joins using MapReduce. In the work, a set of rules

were established to decompose a multi-way join query, in order to evaluate the cost model to execute multi-

way join query for both single MapReduce job and multiple MapReduce jobs. Thus, extensive experiments

were conducted to validate the proposed cost model and the solution of multi-way theta-join queries, and to

compare with the state-of-art solutions in terms of query evaluation efficiency. A Hilbert curve based space

partition method was proposed in the paper to reduce the volume of copying data over network and to adjust

the reduce tasks workload. Certainly, the proposed schema in resource restricted scenarios for scheduling

can help to achieve the evaluation of complex join queries a near optimal time efficiency.

In the paper [13], a binary theta-join and pre-processing clustering algorithm were introduced in

MapReduce framework. The optimal trade-off between the communication cost and the size of the input can

be reached using the best-known algorithm which has high join selectivity. Thus, the improvements of the

state-of-the-art have been presented when the join selectivity is low. In addition, load imbalance was

considered across reducers to decrease the communication cost and the maximum load of a reducer. The

proposed algorithm in the paper is based on 1-Bucket-Theta and M-Bucket. 1-Bucket-Theta requires

minimal statistical information and examines all tuples pairs, making it the most generic algorithm. M-

Bucket-I is better than 1-Bucket-Theta in cases that the join selectivity is small. The worst-case behavior of

1-Bucket Theta matches the lower bounds for the binary theta-join problem, so an analysis was performed.

Clustering histogram buckets were performed to improve these algorithms by achieving more efficient

partitioning of histogram buckets to reducers. The imbalance across reducers, the maximum reducer input,

and the replication rate are the main factors of the efficiency. In the paper, the results have revealed that

load imbalance is not significantly affected by improving the replication rate and maximizing reducer input.

The main difference between M-Bucket-O and M-Bucket-I is that the earlier aims to minimize the

maximum reducer output, whereas the last aims to minimize the maximum reducer input. Join Matrix (JM)

is used to operate M-Bucket-I partitioner. JM includes each cell corresponds to pair of histogram buckets;

trying to create a region for each single reducer and fit cells in these regions. The main goal is to improve

the quality of the partitioner phase by reducing rows and columns of JM. The results confirmed that the

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 8

proposed partitioning algorithm provides up to 59% better time performance. Once the selectivity becomes

lower and the number of the band condition increase, the improvements become more significant. However,

the approach is not intrusive; it can be integrated with the existing state-of-the-art.

In the paper [31], a proposed algorithm called Strict Even Join (SEJ) was designed to partition multi-way

theta joins into smaller groups and selects the best one based on one MapReduce job. Therefore, by calling

SEJ algorithm, a dynamic algorithm is elaborated to optimize the multi-way theta joins. The experiments

have proved the feasibility and efficiency of the proposed randomized algorithm. A method called

largrangian was used to minimize the communication cost between map and reduce functions and to

compute the estimated results per relation. The experiments in the paper have shown the efficiency and the

stability of the proposed algorithm in terms of multi-way joins using one MapReduce job rather than

cascades of two-way joins.

B. Equi join

Equi-join is a special case of theta-join where join condition can be only”=”. MapReduce implementation

follows strategies of earlier parallel database implementation on equi-join operator [17]. Equi-join exploits

MapReduce key-equality which requires more complex join based data flow management. MapReduce

provides balancing between mapper nodes easily due to its simplicity nature. However, in some cases,

standard equi-join algorithm could delay job completion whether a reducer receives a larger shared work.

For this reason, balance load between reducers can resolve the issue by minimizing the greater amount of

work allocated to a reducer and then minimizing job completion time [21]. Equi-join implementation has

four variant types: repartition join, map-only join, reduce-only join and semi join [17].

 Repartition join

The default join algorithm and the most basic equi-join implementation for MapReduce in Hadoop is

repartition join which is the most general join method that can be implemented as one MapReduce job. In

repartition join, map phase repartitions two tables and then tuples are shuffled with the same key. After that,

the result of map phase is assigned to the same reducer which joins the generated tuples [17].

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 9

 Map-only join

Map-only join consists of only map phase; it partitions input data based on the join key and then shuffles

it to the reducers. Map-only join can be implemented on co-partitioned relations based on the join key [17].

Map-side join is an algorithm without Reduce phase [24]. The data sets in addition to their partition are

sorted by the same ordering. The two sets of data pre-partitioned into the same number of splits by the same

partitioner. This algorithm buffers all records with the same keys in memory, as is the case with skew data

may fail due to lack of enough memory [24].

 Replication side join

Reduce-side join is an algorithm which performs data pre-processing in Map phase, and direct join is

done during the Reduce phase [24]. The preprocessing is sorting for the keys. Semi-joins filtering is used to

filter the original data. The partitioner must split the nodes by the key. The reducer should have enough

memory for all records with a same key. It is the most time-consuming, because it contains an additional

phase and transmits data over the network from one phase to another. The algorithm has to pass information

about source of data through the network [24].

 Semi join

Semi-join can be implemented on MapReduce even it has been well studied in parallel database systems.

It is efficient when the result of semi join is relatively small since it requires several MapReduce jobs and

the result of semi join must be implemented first [17].

In the paper [3], a study of the properties hash-based and sort-based equi-join algorithms was focused in

case of fully joining datasets loaded into the main memory. In large high performance distributed data

processing system, building block of a single node setting is very important factor. When running analytical

data processing services on hardware shared among parallel services, memory footprint is an important

deployment consideration. The critical contributions of the work are: studying the impact of memory

footprint for each join algorithm on the number of parallel queries can be achieved, in addition to improving

query response time through allowing system implementers and query optimizers to use the optimal join

algorithm. In addition, the impact of two physical characteristics of join algorithms regarding their input and

output (data being hash partitioned on the join key and data being pre-sorted on the join key) was considered

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 10

in the paper to measure the performance. To optimize complex query pipelines with multiple joins. In

general, equi-join is expensive process and the improving the overall performance of main memory data

processing is relatively a challenging task. The results showed that hash-based join algorithm performs

faster than sort-based join algorithms in most cases. Thus, the hash-based algorithm consumes smaller

memory footprint compared to sort-based algorithms. When join inputs is already sorted, sort-based

algorithms become competitive. The main conclusion of the paper is that considering the physical

characteristics of the input and output is required to achieve the best response time and consolidation for

main memory equi-join processing.

C. Similarity join

Similarity join is one of many applications of join conditions where the results are similar to the join

condition value but not equal to exact value. Therefore, there have been many proposed algorithms to find

top-k most similar pairs, k-nearest returned tuples from two relations, and KNN join which finds the

similarity between tuples based on their distances [17]. String similarity joins have received considerable

interest. String similarity join is widely applied that aims to find all string pairs based on user defined

threshold and a given similarity function [25].

In the paper [27], an efficient set-similarity join algorithm was proposed based on MapReduce to achieve

joins in parallelism. For end-to-end set-similarity joins, a three-stage approach was proposed that takes a set

of records as input and provides a set of joined records according to the set-similarity condition. In order to

minimize the need for replication and to balance the workload, an efficient data-nodes partitioning

technique was proposed. Both self-join and R-S joins were used to control the amount of data-nodes in main

memory. The data still does not fit into main memory of a node even of the use of the most fine-grained

partitioning. Extensive experiments were conducted to get results along with the increasing size of real data

sets in order to estimate the scaling up and the speed up of the proposed algorithm and their properties. By

exploiting the properties of the MapReduce framework, a discussion of different ways efficiently applied

was introduced in terms of multiple inputs, replication of join, and partitioning.

String similarity joins have received considerable interest to design new algorithms called MGjoin with

the assistant of an inverted index. String similarity join is widely applied that aims to find all string pairs

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 11

based on user defined threshold and a given similarity function. In the paper of [25], two-step-filter-and-

refine was adopted by the proposed algorithm to identify similar string pairs adopted approach. The

proposed algorithm can generate candidate pairs based on inverted index and verify the candidate pairs

based on similarity join. On the other hand, the proposed algorithm could result in high verification cost

caused by poor filtering power or greater power of filtering computational cost. The proposed approach was

the first work to explore multiple prefix filtering method was performed based on different orders and a

parallel extension of the algorithm. Extensive experiments were conducted and have shown that the

proposed approach outperforms other approaches mainly state-of-the-art methods in terms of scalability and

efficiency.

In the paper of [6], a scalable string similarity join called MASSJOIN was presented based on

MapReduce. The proposed approach supports both character based similarity functions and set based

similarity functions. Existing partition based signature scheme was extended to perform set based similarity

functions, which generates key-value pairs by utilizing the signatures. Using the proposed approach, key-

value pairs were merged in order to reduce transmission cost and the number of key-value pairs. Therefore,

light-weight filter units were incorporated into key-value pairs in order to improve the performance and

omit the factors of increasing transmission cost. The significance of the proposed method was shown by

conducting extensive experiments; the results proved that the performance of the proposed method is better

than the state-of-the-art approaches.

D. kNN join

KNN join is useful tool mostly used in data mining applications and spatial multimedia databases. It can

produce K Nearest Neighbors (KNN) from one relation for every point in another relation. Performing KNN

joins efficiently is a challenging task since it involves both the join and NN search. Hence, the applications

continue to expand with the amount of data need to process. KNN execution on large data stored in

MapReduce is the main challenging and interesting task since it frequently needed in practice [30]. KNN

join is costly operation since NN search and join are expensive especially when datasets are in large multi-

dimensions. There has been little research on parallel KNN joins in large data since it incrementally

increases being exponential rate of datasets and a challenging task. On the other hand, there have been many

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 12

parallel algorithms in MapReduce for equi-joins, similarity joins, theta-joins, and spatial range joins. Hence,

many challenging and interesting problems were encountered regarding implementing KNN joins in

MapReduce [30]. K Nearest Neighbour KNN join is a primitive operation commonly implemented by

various applications of data mining. KNN join is designed to find k nearest neighbours from one dataset for

every object in another dataset. However, KNN is an expensive operation since it combines k nearest

neighbour query and join operation. Moreover, performing KNN join on centralized machine is difficult

with the increasing volume of data [18]. In many application domains, K Nearest Neighbours is one of the

popular methods used to achieve query point or a set of query points namely KNN-join. Many problems

have received much effort to resolve and to adopt changes to the database specially in stand-alone systems

and spatial databases. These problems may limit the efficiency of relational database management system

large data applications [28]. Typically, KNN join operation correlates a data object located in one dataset

with the corresponding k nearest neighbor located in the same or different dataset [29].

In the paper [30], a novel algorithm was proposed in order to implement parallel KNN joins on large data

using MapReduce demonstrated by Hadoop. The extensive experiments in the paper have demonstrated the

scalability, efficiency, and effectiveness of the proposed methods in large and synthetic datasets. KNN join

is costly operation since NN search and join are expensive especially when datasets are in large multi-

dimensions. In the work based on previous observation, a motivation pays an attention to explore the

problems associated with KNN joins execution on large data in MapReduce. First, Block Nested Loop Join

(BNLJ) was the basic approach was proposed and then it was improved using R-tree indices. The basic

approach does not scale well for large and multidimensional data due to the quadratic number of partitions

produced (number of dataset input blocks and reducers). MapReduce friendly was introduced to handle this

limitation. MapReduce friendly is an approximate algorithm dependent to multi-dimensional datasets

mapping into single dimension. For example, transforming KNN joins and space-filling curves are

converted to a set of single dimension range searches. The proposed algorithms presented in the work were

applied in MapReduce framework and the above issues raised in Hadoop were handled. The extensive

experiments conducted in the work have been implemented over large real datasets, and the results

confirmed good approximation quality which constantly outperforms the basic approach. Parallel KNN join

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 13

in MapReduce was studied in the work including proposing exact H-BRJ and H-zKNNj approximate

algorithms.

In the paper [18], an investigation to perform KNN join using MapReduce was presented. In map phase,

cluster objects are divided into groups, and then KNN join is performed on each group of objects

independently in reduce phase. Hence, the proposed mapping mechanism is designed to exploit distance-

filtering rules using Voronoi-diagram-based partitioning method in order to minimize computational and

shuffling costs. Two approximate algorithms were proposed to reduce number of replicas and then reduced

shuffling cost. The primary contributions of the paper are: presenting an implementation of KNN joins for

multi-dimensional and large volume datasets using MapReduce framework without any modification.

Additionally, in order to perform KNN join, an efficient mapping method is designed to divide objects into

groups; every group is processed by a reducer. The distances between data partitions are more closely

between groups and reduce number of replicas. Moreover, a cost model was developed to compute the

number of replicas resulted from shuffling process. The extensive experiments have been conducted

demonstrate the efficiency, robustness, and scalability of proposed methods.

In the paper of [28], a new method to achieve both KNN and KNN join in relational database was

integrated with further query conditions. The main purpose was to design an algorithm that has the least

impact and trivial changes to relational algorithms of database engine. The proposed algorithm uses SQL

operators that generate the best plan to be used by query optimizer without radical changes to the database.

The proposed approach is guaranteed to find the best-estimated KNN exactly in logarithmic cost in terms of

number of block accesses required using only a small number of random shifts for databases in any fixed

dimension. The extensive experiments have been conducted have demonstrated the efficiency and

practicality of the proposed approach mainly on large, real, and synthetic datasets.

In general, KNN-join is designed to handle static datasets but not frequently updated datasets, whereas

KNN-join is an expensive operation since it applied on high dimensional data. In the paper of [29], a novel

KNN join method was proposed namely KNN-join+ to provide an effective KNN results with no significant

changes to high dimensional datasets. Additionally, the proposed method guarantees to answer KNN queries

of the advanced applications with the least workload. The results have revealed the effectiveness of the

KNN-join+ to fast process high dimensional KNN join queries in both static and dynamic datasets. The

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 14

proposed approach outperforms the existing indexing techniques by providing the excellent and scalable

choice to handle dynamic dimensional data when dimensions are high especially in terms of sequential scan.

E. Top-k join

Many applications have used top-k similarity join to calculate the most top-k similar pairs among

different data records in a dataset. Typically, the time performance in top-k join is a challenging issue with

the increased applications that require processing vast datasets. However, traditional methods cannot easily

find the top-k pairs in such massive amounts of data [4].

In the paper [14], a new class of queries called top-k multiple-type integrated query (top-k MULTI) was

defined. The main role of top-k MULTI query is to treat several data types to find the relevance between the

object and the query. It can deal with many data types such as relational, spatial, and textual data types. The

main discrimination between traditional top-k query and top-k MULTI query is that the dependency of

component scores on the top-k MULTI query to find final scores. Hence, traditional top-k spatial keyword

query can be considered as an instance of top-k MULTI query. In the paper, an integration of the relational

data type into the traditional top-k spatial keyword query to create top-k spatial keyword-relational (SKR)

query to show the importance of top-k MULTI query. Additionally, an investigation of several approaches

to process top-k MULTI query (hybrid index and separate index approaches) and top-k SKR query was

presented. The key issue for top-k MULTI query processing is the Scalability due to the multiple data types

integrated in a query. In hybrid index approach, all indices for top-k MULTI query are built in an integrated

form creating multi-level indices. On the other hand, all individual indices are maintained independently in

separate index approach. A new query processing method was proposed for the top-k SKR query called

Separate SKR based on separate index approach. Therefore, two methods were presented based on hybrid

index approach to the top-k SKR query through expanding characteristic methods for the top-k spatial

keyword query. Finally, a comparison of the results of extensive experiments on top-k SKR query using real

datasets was performed to measure the efficiency and scalability of the methods from storage and query

performance perspectives. The results showed that Separate SKR was more efficient and scalable up to 13

times than extended hybrid index methods. Further, Separate SKR consumes storage space up to 3 times

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 15

less than extended hybrid index methods. In conclusion, separate index method can be easily extended to

encourage a new data type for top-k MULTI query.

The proposed algorithm in [4] namely RDD-based can perform top-k similarity join over large clusters

on high dimensional data sets. In general, RDD-based algorithm involves four stages that load multiple

high-dimensional records into HDFS to find the top-k closest pairs ordered based on Hamming distances to

perform global top-k pairs. An efficient distance function based on Locality Sensitive Hashing (LSH) was

developed to increase the process of top-k similarity join and comparisons. All pairs of LSH signatures are

split into partitions to minimize the amount of data during the RDD running time. Therefore, the proposed

algorithm is capable to calculate top-k closest pairs in parallelism by exploiting a serial computation

strategy. The results of experiments have revealed the scalability and effectiveness of RDD-based proposed

algorithm.

F. Graph similarity join

One of the advanced operations used in a wide range of academic, theoretical, real, and practical

applications is to identify clusters or close-knit communities in graphs. Practical algorithmic heuristics are

required to efficiently embrace the problem either the theoretical algorithm is computationally or inflexible

expensive. A set of significant challenges remain in implementing these heuristics to work for large real

world graphs such as irregular data access patterns, compound factors, scale of data, intensive operation

computation, and better approximation restriction [26].

In a distributed framework like MapReduce, performing graph-analysis is a challenging task. Many

approaches have been proposed for graph-analysis of algorithms, but they perform shuffling and storing

phases which increase the cost of high communication in MapReduce [8]. Graph similarity joins is very

important with the advent of massive graph-modelled data, since it is widely applied for many objectives

such as data cleaning [5].

In the paper [8], a new design pattern for a family of iterative graph algorithms for MapReduce

framework. The proposed method separates graph topology from the graph-analysis results. In each iteration

step, each MapReduce node existing in the graph participates in graph-analysis task and reads the same

partition of the graph locally. Each node also reads all the current analysis results from the distributed file

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 16

system. Using merge-join, the results of iterations are correlated to each graph partition locally, in addition

to generate and dump the new improved analysis results in the graph partition to HDFS. The algorithm

requires only one MapReduce job to perform pre-processing graph, and the actual analysis using repartition

requires one map-based MapReduce job. All partial results are contained in HDFS which stores the result of

map stage to perform merge-join between a partition of the graph and a global file. In detail, the method to

perform graph-analysis used parallel merge-join between the partition of graph and a global table containing

all partial results of each node. The map-based approach proposed in the paper outperforms the basic

approach since it can improve the performance of graph-analysis. At end, the approach can reduce the

communication cost and improve the performance by separating the graph topology from the graph-

analysis.

A novel MapReduce-based algorithm called pClust-mr was proposed in the paper of [26] for a popular

serial graph clustering. Thus, a novel application of the proposed method was developed to cluster

biological graphs more specifically to identify dense sub graphs from bipartite graphs. The proposed

algorithm uses pipelined MapReduce stages to implement a mixture of shuffling and sorting operations in

order to process the edges of the graph as an input. The results have revealed the linear scaling of the time

performance on small real world graphs.

In the paper of [5], graph similarity joins are considered under edit distance limitations in order to find

the pair of closest to each other lower than a specified threshold. With the use of MapReduce programming

model, a scalable algorithm was proposed namely MGSJoin, which applies filtering verification framework

to perform the most efficient graph similarity join. The main idea of the algorithm is to count the

overlapping graph signatures with filtered candidates. Spectral Bloom filters are introduced to minimize the

number of key-value pairs with the potential issue of too many key-value pairs in filtering phase. In

addition, multi-way join strategy was integrated to increase the efficiency of GED calculation for

verification based on MapReduce. The proposed algorithm is efficient and scalable with prove of extensive

empirical experiments demonstration. In the paper, the main focus is on graph similarity join mainly for

graph processing data. For example, suppose there are two graph object sets with distance threshold, and we

have to return graph similarity join including all pairs of graph objects contained in these two graphs in

terms of the lowest distances between them. In pre-processing of graph data mining, graph similarity join

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 17

has a wide range of applications. The main contribution of the work is to present MapReduce based graph

similarity join algorithm to redesign the current in-memory graph similarity join algorithm. Moreover,

large-scale graph datasets can be processed as a resulting baseline of the algorithm. More specifically,

Bloom filter capacity was proposed to minimize intermediate key-value pairs. Therefore, optimized

verification strategy was presented by multi-way join algorithm that can reduce number of rounds of

MapReduce. The results have demonstrated the efficiency and scalability of the proposed algorithm against

current solutions with the implementation in real publicly available datasets conducting in wide range of

applications.

G. Bloom join

A Bloom filter is a space-efficient probabilistic data structure; that is used to test whether an element is a

member of a set. A query returns either "possibly in set" or "not in set". Elements can be added to the set,

but not removed. An empty Bloom filter is a bit array of m bits, all set to 0. There must also be k different

hash functions defined, each of which maps or hashes some set element to one of the m array positions with

a uniform random distribution. K is a constant, much smaller than m, which is proportional to the number of

elements to be added. To add an element, feed it to each of the k hash functions to get k array positions. Set

the bits at all these positions to one [19].

It reduces transmission cost. Bloom join with open source map-reduce framework of Hadoop improves

the performance of query optimization. The reduce side join applied bloom filters which is inexpensive than

map-side join [19]. There are two kinds of cases needing to be considered: two-way joins; that occurs

between two data sets, and multi-way joins; that occurs between more than two data sets, and it is

implemented by a sequence of two two-way joins [24].

Bloom filter: a type of the map-reduce join, the relation queue is used to decide which relations must be

further processed. The memory space needed to store a bloom filter is small compared to the amount of data

belonging to the set being tested. For improving the performance of query execution the reduce side join is

used with filtering on the map side which generates less I/O cost, but there remain many non-joining tuples

after filtering [23]. The individual input records can be processed in parallel. Map function does not only tag

the input records but also filters them allowing only some of them to be part of the final map output, there is

https://en.wikipedia.org/wiki/Probabilistic
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Element_(mathematics)
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Bit_array
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Map_(mathematics)

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 18

no replication for the elements. The input to the map function is file split. The hash functions and reduces

the total processing cost. It reduces transmission cost, it reduces the amount of data transferred compared to

semi-join by utilizing the concept of bloom filters [19]. Two-way join needs less memory space than multi-

way join [32].

H. MRFA join

This algorithm, used to manage huge amount of data on large scale systems even for highly skewed data.

It is Map/Reduce Frequency Adaptive Join algorithm based on distributed histograms and randomized

redistribution approach. The support for fault tolerance and load balancing in Map-Reduce and Distributed

File System are preserved if possible: the inherent load imbalance due to repeated values must be handled

efficiently by the join algorithm and not by the Map/Reduce framework. Join computation in MRFA-Join

proceeds in two map-reduce jobs. First, one phase to compute distributed histograms and to create

randomized communication templates to redistribute only relevant data while avoiding the effect of data

skew, Map phase to generate a tagged “local histogram" for input relations then Reduce phase to create join

result global histogram index and randomized communication templates for relevant data [10].

Second, another phase is used to generate join output result by using communications templates carried

out in the previous step; Map phase to create a local hash table and to redistribute relevant data using

randomized communication templates, then Reduce phase to compute join result. The detailed information

provided by distributed histograms, allows to reduce communications costs to only relevant data while

guaranteeing perfect balancing processing due to the fact that, all the generated join tasks and buffered data

do not never exceed a user defined size using threshold frequencies. This makes the algorithm scalable and

outperforming existing map-reduce join algorithms which fail to handle skewed data whenever join tasks

cannot fit in the available node's memory. MRFA-Join can also benefit from Map/Reduce underlying load

balancing framework in heterogeneous or a multi-user environment since MRFA-Join is implemented

without any change in Map/Reduce framework. The overhead related to distributed histograms processing

remains very small compared to the gain in performance and communication costs since only relevant data

is processed or redistributed across the network [10].

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 19

MRFA-Join: a general join framework with filtering techniques in Map-Reduce. To avoid the effect of

repeated keys, Map user-defined function should generate distinct output keys even for records having the

same join attribute value. The load balance is perfect. To compute the join of two datasets, the input

relations are divided into blocks (splits) of data in distributed histograms and to buckets in a randomized key

redistribution approach. These splits are also replicated on several nodes for reliability. The detailed

information provided by these histograms, communication costs is reduced to only relevant data processing

due to the fact that all the generated join tasks and buffered data never exceed a user defined size. The

overhead related to distributed histograms processing remains very small compared to the gain in

performance and communication costs since only relevant data is processed or across the network. The

global redistribution cost is reduced to a minimum [10].

I. Intersection filter

The intersection filters can filter out disjoint elements between two datasets, there are three approaches

used to build the intersection filter. First approach is a pair of Bloom filters; specifying the set of

intersection by eliminating all disjoint elements between the input datasets. Then filter out the disjoint

elements in the input datasets by applying pair of bloom filters on the input datasets. Each tuple in one input

dataset is queried into the Bloom filter of the other input dataset by k hash functions. If its join key is a

member of the filter, the tuple containing this key will be returned because the key is a common member of

the two input datasets. Otherwise, the tuple will be removed from its dataset because its join key is a disjoint

member and this tuple is a non-joining tuple. This approach does not require the filters to have the same size

m and k hash functions. The second approach is Intersection of un-partitioned Bloom filters; this approach

is based on the idea that intersecting Bloom filters will produce a result filter called the intersection filter.

There is unfortunately little difference between the intersection filter and the intersection of Bloom filters, it

is used un-partitioned Bloom filter, only one intersection Bloom filter is used to remove most non-joining

tuples from the input datasets instead of using two filters as the first approach. It should use the un-

partitioned Bloom filters with the same size m and k hash functions [23].

The last approach is Intersection of partitioned Bloom filters; in this approach the partitioned Bloom

filters are used to create the intersection filter. The size of partitioned Bloom filters can be changed after

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 20

they are created. The filters may have different sizes but their partitions should have the same size. The

intersection filter is generated by intersecting pairs of partitions of two partitioned filters. The intersection

filter is generated by intersecting pairs of partitions of two partitioned filters. Two filters with 3 partitions

are pair wise intersected with the bit-wise and to produce the result filter including three 4-bit partitions.

This intersection filter represents the approximate intersection of the two datasets. If there exists at least one

partition of the result filter containing all m/k bits equal to 0, the two input datasets are disjoint. So the join

processing can be finished without doing anything. The pre-processing step is written as a standard map

include two jobs running in parallel to process the input datasets (R and S) to build the intersection filter

[23].

Intersection filter: Three approaches proposed to compute the intersection filter; intersection to Bloom

filters, un-partitioned and Partitioned Bloom Filters. It filters out disjoint elements or non-joining tuples

from both datasets, not only on one input dataset [23]. The intersection filter uses hash functions to portion

the entire data sets. The memory space for first approach is small [11], but un-partition needs less memory

space than partition [23]. The first approach needs to maintain two filters while others require one filter on

nodes. A pre-processing enables a dramatic reduction in I/O and computational overhead. It produces much

less intermediate data. Join processing in intersection filter can minimize disk I/O and communication costs.

It is more effective through a cost-based comparison of join using different approaches. The preprocessing

increase total cost, but it is small compared with other algorithms [22].

J. Parallel join: semi join

There are three ways to implement the semi-join operation; a semi-join using bloom-filter, semi-join

using selection, an adaptive semi-join. The preprocessing in adaptive and selection semi-join is unique

finding keys which are present in two datasets, and the relation queue is used to decide which relations must

be further processed in bloom filter [10]. Delete the tuples that will not be used in join by using the filter

will reduce the amount of data transferred over the network and the size of the dataset for the join. These

filtering techniques introduce some cost, the semi-join can improve the performance but the larger data sets

will decrease the performance. There is no replication on the data sets. The additional information about the

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 21

source of data will increase the data transferred. Memory space can be large depend on the size of the input

data sets, but it can improve performance and reduce the possibility of memory overflow [24].

When a large portion of the data set does not take part in the join, deleting of tuples that will not be used

in join significantly it will reduces the amount of data transferred over the network and the size of the

dataset for the join. These filtering techniques introduce some cost, so the semi-join can improve the

performance of the system only if the join key has low selectivity. There are three ways to implement the

semi-join operation [24]. Parallel join is one of the most expensive operations in terms both I/O and CPU

costs.

 A semi join using bloom filter

There are two jobs to perform the semi join. The Map phase and the Reduce phase. In the Map phase, the

keys from one set are selected and added to the Bloom-filter. In the Reduce phase combines the output from

Map phase into one. The second job filters only the output of the Map phase, increasing the size of the

bitmap will increase the accuracy on this approach, but will increase the amounts of memory space needed.

The advantage of this method is it’s the compactness. The performance of the semi-join using Bloom-filter

highly depends on the balance between the Bloom-filter sizes, which increases the time needed for its

reconstruction of the filter in the second job, the large size of the data set can decrease the performance of

the join [24].

 A semi join using selection

Semi-join with selection extracts unique keys and constructs a hash table. The hash table created in the

first step filters the second set. In the context of Map-Reduce, the semi-join is performed in two jobs.

Unique keys are selected during the Map phase of the first job and then they are combined into one file

during the Map phase. The second job consists of only the Map phase, which filters out the second set. The

semi-join using selection has some limitations. Hash table in memory, based on records of unique keys, can

be very large, and depends on the key size and the number of different keys [24].

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 22

 The adaptive semi join

The Adaptive semi join is performed in one job, but filters the original data on the flight during the join.

Similar to the Reduce-side join at the Map phase the keys from two data sets are read and values are set

equal to tags which identify the source of the keys. At the Reduce phase keys with different tags are

selected. The disadvantage of this approach is that additional information about the source of data is

transmitted over the network [24].

K. Filter join

This type of join focused on reducing the number of map output records that are not joined. The map

output records are replicated multiple times, so filtering out redundant records removes multiple copies of

the record in multi-way joins. To join number of datasets simultaneously, some datasets need to be

replicated. Replication may degrade the join performance, so it is important to reduce the number of

redundant records. There are some filtering techniques to multi-way joins. Multi-way joins can be classified

into two types: common attribute joins and distinct attribute joins. A common attribute join combines

datasets based on one or more shared attributes, whereas some relations do not have join attributes in a

distinct attribute join [16].

 Common attribute joins

The entire input datasets share joins attributes. The input records do not need to be replicated and they

can be processed in a similar manner to two-way joins. A set of filters is created and probed in turn

depending on the processing order of the input datasets [16]. There is no need to duplicate the entire

datasets, the first data set used to make a set of filters to the next dataset. The cost depends on the number of

input records, the ratio of the joined records, and the false positive rate of the filters; it is efficient when

small portions of records participate in joins. There is no partitioning for input dataset. It needs a small

memory space [16].

 Distinct attribute joins

Distinct attribute joins required the replication of some input datasets. The star-dim pattern delivered the

best performance, chain join has the least performance between them. There are some equations can be used

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 23

to select the processing order of the input data sets, and to estimate the join cost, because the processing

order must be selected carefully because it affects the join cost, but there may be a large search space if the

numbers of reducers and the input datasets are large, cost for star-fact is less than chain join but more than

star-dim. The replication of input records for their corresponding reducers can be implemented in a similar

manner to the data partitioning. The input datasets may not have some join attributes. Thus, some of the

datasets with missing attributes need to be replicated because their records may be joined to the input

records of other datasets with any values of the missing attributes. The filters can be applied in three

patterns: chain, star-fact, and star-dim [16].

 Chain

The chain pattern creates filters similar to common attribute joins, except that each set of filters is created

for a different join attribute [16].

 Star fact

The star-fact pattern creates filters using the dataset with both join attributes and uses the filters to

process the other datasets [16].

 Star-Dim

The star-dim pattern creates filters using the datasets with missing join attributes and uses the filters to

process the other dataset [16].

L. SJMR: parallelizing spatial join

Spatial join merges two spatial data sets with a spatial relationship between the objects. Spatial join is

commonly used in applications such as spatial robotics, DBMS, and game programming. Given two sets of

multidimensional objects in Euclidean space, a spatial join query can discover all pairs of objects satisfying

a given spatial relation, such as intersection. The input dataset is preprocessed to extract some key attributes.

The input datasets are replicated to several partitions at Map stage. The filter is used to remove the tuples

that cannot be parts of the result. This algorithm depends on good load balancing strategies. The grid

partitioning method is used to dived the random data among n processors, the performance of SJMR

improves by the increasing of node number, it’s performance is high compared with PPBSM algorithm.

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 24

Reduce task number and memory size of each node is increased to make the memory size large enough to

filter and refine all in memory without writing operations so it needs large memory space. This method

could only proceed when Reduce stage has finished completely, so its cost is high [33].

M. Massively parallel sort merge (MPSM) joins

MPSM join is a new sort-based parallel join method scaling almost linearly with the number of clusters.

Therefore, this sort-based join outperforms hash-based parallel join algorithms on modern multi-core

servers. Sort-based algorithms formed the basis for multi-core optimization in recent proposed approaches

[1]. There are three type of this algorithm:

 B-MPSM algorithm

It is the basic form of MPSM algorithm, which is unaffected by any kind of skew. It allows some

similarity to fragment and replicate distributed join algorithms. It only replicates merge join scans of the

threads/cores but does not duplicate any data [1].

 P-MPSM algorithm

It is an improved MPSM version based on range partitioning of the input by join keys [1].

 D-MPSM algorithm

The MPSM can be effectively modified to non-main memory scenarios, in which intermediate data must

be written to disk [1].

B-MPSM starts by generating sorted runs in parallel. There is no data duplication but instead data is

partitioned into equal sizes. B-MPSM performs a number of worker threads of sort-merge joins in parallel.

At result, it a large memory space is needed. P-MPSM uses join keys to split the input data sets. D-MPSM

uses a small part of memory to store the data during join processing so it is a RAM-constrained version that

spools runs to disk. The performance depends on the number of threads running in parallel. MPSM adds

only very little overhead to the overall join processing. The algorithms take advantage of massive thread

parallelism, fast inter-processor communication through local memory. Memory space needed for B-MPSM

and P-MPSM are large but it is small for D-MPSM [1].

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 25

After deeply reviewed papers and works in the field of MapReduce join algorithms, we are motivated to

make a comparison between these investigated papers. The comparison will be based on the following

criteria (technical aspects of join algorithms): pre-processing, filtering, partitioning, replication, load

balancing, performance, memory space, communication cost, query processing, and query optimization.

Compared information is displayed in Table 1. It shows different MapReduce join algorithms from literature

analyzed from the above-mentioned perspectives.

We classify MapReduce join algorithms into several categories including Multi way join, Equi-join,

Similarity join, and Bloom join filter. Further, Multi way join algorithms are also divided into: two-way or

three-way; replicated join, and star join, or theta-join. In Equi-join, the algorithms are also subdivided into:

repartition join, map-only join, replication side, and semi join. Moreover, similarity join algorithms are

classified into: top-k, KNN, string similarity, and graph similarity. Lastly but not least, Bloom join filter is

either intersection filter or parallel join.

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 26

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 27

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 28

III. RESULTS AND DISCUSSION

In terms of theta-join, we investigated four of the most recent papers in MapReduce framework: M-

Bucket-Theta [13], M-Bucket [21], MRJ [34], and Random algorithm SEJ [31]. M-Bucket-Theta in [13] a

binary theta-join and pre-processing clustering algorithm were introduced. In addition, load imbalance was

considered to decrease the communication cost and the maximum load of a reducer. The proposed algorithm

in the paper is based on 1-Bucket-Theta that requires minimal statistical information and examines all tuples

pairs. The results confirmed that the proposed partitioning algorithm provides up to 59% better time

performance. However, [31] still perform join performance less than M-Bucket [21] that implements theta-

join as a single MapReduce job without changing MapReduce framework. It implements memory-aware

approach, minimizes total cost, and has better performance. Another examined paper was MRJ [34] that

provides a solution using only single MapReduce job for efficient execution of chain-typed theta-join near

optimal time efficiency. The method can achieve substantial improvement of the join processing efficiency

compared to other adopted solutions. A Hilbert curve based space partition method was proposed in the

paper to reduce the volume of copying data over network and to adjust the reduce tasks workload. The last

approach is Random algorithm SEJ [31] that performs efficient multi-way joins using one MapReduce job

rather than cascades of two-way joins due to the use of largrangian method to reduce communication cost

and to increase performance.

In terms of KNN join, we investigated four of the most recent papers in MapReduce framework: PGBJ

[18], kNNJoin+ self-join [29], H-zkNNJ [30], and zχ-kNN [28]. The proposed method in [18] was designed

based on mapping mechanism that exploits distance-filtering rules using Voronoi-diagram-based

partitioning method in order to minimize computational and shuffling costs. PGBJ achieved poor

performance due to the large memory consumption. However, kNNJoin+ self-join proposed in [29] is more

effective that results with no significant changes to high dimensional datasets and with the least workload. ,

kNNJoin+ outperforms other indexing techniques by providing the excellent and scalable choice to handle

dynamic dimensional data when dimensions are high. Another examined approach is H-zkNNJ in [30] that

proposed Block Nested Loop Join (BNLJ) for scalability requiring only linear number of blocks, dataset

input and reducers. The problems and issued addressed in the study are: the issue of reducing the amount of

communication occurred between Map and Reduce phases, the issue of performing random shifts in

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 29

MapReduce, and the issue of designing a good partition over single dimensional z-values for joins purpose.

In [28], zχ-kNN uses SQL operators that generate the best plan to query optimizer without radical changes

to the database. zχ-kNN approach is guaranteed to find the best-estimated KNN exactly in logarithmic cost

in terms of number of block accesses.

In terms of top-k join, we investigated two of the most recent papers in MapReduce framework: Top-k

MULTI query [14] and RDD-based algorithm [4]. First, Top-k MULTI query in [14] performed efficient

and scalable storage and query performance using Separate SKR. Further, Separate SKR consumes storage

space up to 3 times less than extended hybrid index methods. However, RDD-based algorithm proposed in

[4] is based on Hamming distances and distance function based on Locality Sensitive Hashing. RDD-based

algorithm can perform top-k similarity join over large clusters on high dimensional data sets.

In terms of Graph similarity join, we investigated three of the most recent papers in MapReduce

framework: MGSJoin [5], pClust-mr [26], and Map-based graph analysis [8]. MGS Join in [5] applies

filtering verification framework in graph similarity join mainly for graph processing data. MGSJ join was

presented to redesign the current in-memory graph similarity join algorithm and to use the capacity of

Bloom filter capacity to minimize intermediate key-value pairs. Therefore, it used an optimized verification

strategy by multi-way join algorithm to reduce number of rounds of MapReduce which results in more

efficient and scalable algorithm against other solutions. PClust-mr in [26] was proposed for serial graph

clustering using pipelined MapReduce stages to implement a mixture of shuffling and sorting operations.

PClust-mr results in linear scaling of the time performance on small real world graphs but it still needs to be

improved for large graphs. Map-based graph analysis in [8] requires only one MapReduce job to perform

pre-processing graph. It uses parallel merge-join to generate and dump the new improved analysis results in

the graph partition to HDFS. It outperforms other approaches due to the improved performance of graph-

analysis and the reduced communication cost by separating the graph topology from the graph-analysis.

In terms of String similarity join, we investigated three of the most recent papers in MapReduce

framework: MASSJOIN [6], PPJoin+ [27], and MGJoin [25]. MASSJOIN in [6] supports both character

based similarity functions and set based similarity functions which generates key-value pairs by utilizing the

signatures. MASSJOIN can reduce transmission cost and the number of key-value pairs using lightweight

filter units to improve the performance better than others and to omit the factors of increasing transmission

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 30

cost. PPJoin+ in [27] is a three-stage approach and an efficient data-node partitioning technique proposed to

minimize the need for replication and to balance the workload for end-to-end set-similarity joins. However,

PPJoin+ still does not fit into memory with the increasing size of real data sets even with the use of self-join

and R-S joins to control the amount of data-nodes in main memory. MGJoin in [25] results in high

verification cost caused by poor filtering power or greater power of filtering computational cost. MGJoin

adopted two-step-filter-and-refine, which was the first work to explore multiple prefix filtering method

based on different orders and a parallel extension of the algorithm.

In terms of Multi-way join, we investigated two of the most recent papers in MapReduce framework: m-

way: S2, P2, and PM [20] and three-way join [12]. M-way in [20] uses three types of algorithms were

implemented: S2, P2, and PM. M-way join can reduce the number of binary multiplications by taking the

advantage of multi-way join operation. It has demonstrated the capacity of the parallel m-way join to

enhance the process of matrix multiplication differs than the rest of papers. It also can balance the intra-

operation parallelism and inter-parallelism approaches because of using the raw key implementation and

parallel two-way join algorithm. Three-way join in [12] utilizes distributed computation of joins using

clusters of many machines for efficient graph algorithms. It uses a cascade of two-way joins if the join result

needs to be summarized or aggregated to get more efficiency. However, the result of the join should be

preferably cascaded of two-way joins to reduce the communication cost.

In terms of Equi-join, we investigated only one of the most recent papers in MapReduce framework:

STRSM [3]. It studied the impact of memory footprint for each join algorithm on the number of parallel

queries to improve query response time. It allows system implementers and query optimizer to use the

optimal join algorithm and to optimize complex query pipelines with multiple joins. However, hash-based

join algorithm performs faster and consumes smaller memory footprint compared to sort-based algorithms

in most cases.

Two-way join is less efficient than the improved repartition join especially if the size of the relation is

small. Therefore, two-way join needs additional Map-Reduce rounds to build the bloom-filters. As a result,

it is more efficient than improved repartition join. However, when the size of the relation grows to over 50

million records, the bloom-filters can filter a lot of useless data to save network overhead and processing

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 31

overhead. The bloom-filter can be used to filter useless data and eventually improve the efficiency of the

two-way join and multi-way joins [24].

Bloom Filter, which works better than Semi-Join, reduces amount of data transfer between different sites

and performs efficient query processing. Bloom join with open source map-reduce framework of Hadoop

improves the performance of query optimization [19].

MRFA-Join algorithm ensures of perfect balancing properties during all stages of join computation [10].

The intersection filter has an extra cost for the preprocessing step, but its efficiency in space-saving and

filtering often outweighs these shortcomings [23]. However, its performance is least compared with other

join algorithms like bloom join and Reduce-Side-Join [22].

The un-partitioned intersection filters seem more efficient than the joins using the partitioned intersection

filter because of their filtering performance. However, the partitioned intersection filter can easily discover

disjoint datasets on a join key column and stop the join processing [22].

Common attribute filter joins and distinct attribute filter joins significantly outperformed the repartition

join on the other hand, MFR-Join outperforms them and the semi-join with bloom filters [16]. Moreover,

common attribute filter joins and distinct attribute filter joins improve the execution time significantly by

reducing the amount of intermediate results when small portions of input datasets are joined [16].

The performance of SJMR algorithm was compared with the performance of PPBSM algorithm; the

performance of PPBSM is less than the performance of SJMR algorithm. On the other hand, SJMR

algorithm uses a technique called reference tile method, which is an improvement to reference point

method. Instead of using a duplication and elimination operator at the end of SJMR, it is better to avoid

producing duplicates online per reduce job. As a result, the filter step in [33] was modified through a simple

test applied during the intersection’s checking of rectangles. The results are illustrated in Table 1.

IV. CONCLUSION AND FUTURE WORK

We have produced big effort to create this survey that mainly specialized to MapReduce programming

model and software framework. MapReduce is intended to facilitate and simplify the processing of massive

amount of data through large clusters of commodity hardware in parallelism, reliable, and fault-tolerant

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 32

manner. We summarized a number of join algorithms in introduced under Map-Reduce framework, and we

compared between them based on a set of criteria. Per join type, some of the investigated approaches

showed better performance than other approaches. Several join algorithms have presented disparate results

in terms of pre-processing, filtering, partitioning, replication, load balancing, performance, memory space,

and total cost. The performance of each algorithm depends on the size and duplicates of the input data sets.

We can say that the preprocessing step can improve the performance but it requires additional cost such as

incorporating filtering techniques. However, we cannot conclude that there is a specific algorithm has the

best and perfect performance of the solution.

We will extend this research again by incorporating other comparison criteria and involving other

recently published papers. We also can consider other join types that have not explored yet such as block-

nested loop join, hash join, symmetric hash join, natural-join, and self-Join. In addition, we have an

opportunity to follow-up enhancements shown by the previous algorithms. This survey is ongoing; it has a

chance to be continuously up to date according to the improvements and developments to MapReduce

framework as well as the enhancement of distributed and parallel computing based on MapReduce

paradigm. One important opportunity for future work is to benefit every researcher interested in this area of

research in order to resolve some encountered problems and shortcomings outlined in this paper.

Conversely, this research acts as an initiation point to enhance being proposed algorithms in the field of big

data analysis techniques based on MapReduce.

Acknowledgment

We specially thank Dr. Al-badarneh, Amer for his assistance and comments that greatly improved this

work, and our parents for their support.

References

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 33

[1] Albutiu, M. C., Kemper, A., & Neumann, T. (2012). Massively parallel sort-merge joins in main

memory multi-core database systems. Proceedings of the VLDB Endowment, 5(10), 1064-1075.

[2] Andreas, C. (2010). Designing a Parallel Query Engine over Map/Reduce (Doctoral dissertation,

Master’s thesis, Informatics MSc, School of Informatics, University of Edinburgh).

[3] Blanas, S., & Patel, J. M. (2013, October). Memory footprint matters: efficient equi-join algorithms for

main memory data processing. In Proceedings of the 4th annual Symposium on Cloud Computing (p.

19). ACM.

[4] Chen, D., Shen, C., Feng, J., & Le, J. (2015). An Efficient Parallel Top-k Similarity Join for Massive

Multidimensional Data Using Spark. International Journal of Database Theory and Application, 8(3),

57-68.

[5] Chen, Y., Zhao, X., Xiao, C., Zhang, W., & Tang, J. (2014). Efficient and Scalable Graph Similarity

Joins in MapReduce. The Scientific World Journal, 2014.

[6] Deng, D., Li, G., Hao, S., Wang, J., & Feng, J. (2014, March). Massjoin: A mapreduce-based method

for scalable string similarity joins. In Data Engineering (ICDE), 2014 IEEE 30th International

Conference on (pp. 340-351). IEEE.

[7] Doulkeridis, C., & Nørvåg, K. (2014). A survey of large-scale analytical query processing in

MapReduce. The VLDB Journal, 23(3), 355-380.

[8] Elmasri, R., & Navathe, S. (2009). Fundamentals of database systems. 人民邮电出版社.

[9] Gupta, U., & Fegaras, L. (2013, October). Map-based graph analysis on MapReduce. In Big Data, 2013

IEEE International Conference on (pp. 24-30). IEEE.

[10] Hassan, M. A. H., Bamha, M., & Loulergue, F. (2014). Handling data-skew effects in join operations

using mapreduce. Procedia Computer Science, 29, 145-158.

[11] Jeffrey, M. C., & Steffan, J. G. (2011, June). Understanding Bloom filter intersection for lazy address-

set disambiguation. In Proceedings of the twenty-third annual ACM symposium on Parallelism in

algorithms and architectures (pp. 345-354). ACM.

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 34

[12] Kimmett, B., Thomo, A., & Venkatesh, S. (2014, July). Three-way joins on mapreduce: An

experimental study. In Information, Intelligence, Systems and Applications, IISA 2014, The 5th

International Conference on (pp. 227-232). IEEE.

[13] Koumarelas, I. K., Naskos, A., & Gounaris, A. (2014, March). Binary Theta-Joins using MapReduce:

Efficiency Analysis and Improvements. In EDBT/ICDT Workshops (pp. 6-9).

[14] Kwon, H. Y., & Whang, K. Y. (2015). Scalable and efficient processing of top-k multiple-type

integrated queries. World Wide Web, 1-25. [15] Lee, K. H., Lee, Y. J., Choi, H., Chung, Y. D., & Moon,

B. (2012). Parallel data processing with MapReduce: a survey. AcM sIGMoD Record, 40(4), 11-20.

[15] Lee, T., Im, D. H., Kim, H., & Kim, H. J. (2014). Application of filters to multiway joins in mapreduce.

Mathematical Problems in Engineering, 2014.

[16] Lee, T., Im, D. H., Kim, H., & Kim, H. J. (2014). Application of filters to multiway joins in mapreduce.

Mathematical Problems in Engineering, 2014.

[17] Li, F., Ooi, B. C., Özsu, M. T., & Wu, S. (2014). Distributed data management using MapReduce. ACM

Computing Surveys (CSUR), 46(3), 31.

[18] Lu, W., Shen, Y., Chen, S., & Ooi, B. C. (2012). Efficient processing of k nearest neighbor joins using

mapreduce. Proceedings of the VLDB Endowment, 5(10), 1016-1027.

[19] Mahajan, S. M., & Jadhav, M. V. P. BLOOM JOIN FINE-TUNES DISTRIBUTED QUERY IN

HADOOP ENVIRONMENT.

[20] Myung, J., & Lee, S. G. (2012, February). Matrix chain multiplication via multi-way join algorithms in

MapReduce. In Proceedings of the 6th International Conference on Ubiquitous Information

Management and Communication (p. 53). ACM.

[21] Okcan, A., & Riedewald, M. (2011, June). Processing theta-joins using MapReduce. In Proceedings of

the 2011 ACM SIGMOD International Conference on Management of data (pp. 949-960). ACM.

[22] Phan, T. C. (2014). Optimization for big joins and recursive query evaluation using intersection and

difference filters in MapReduce (Doctoral dissertation, Université Blaise Pascal-Clermont-Ferrand II).

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 35

[23] Phan, T. C., d'Orazio, L., & Rigaux, P. (2013, August). Toward intersection filter-based optimization for

joins in mapreduce. In Proceedings of the 2Nd International Workshop on Cloud Intelligence (p. 2).

ACM.

[24] Pigul, A. (2012). Comparative Study Parallel Join Algorithms for MapReduce environment. Труды

Института системного программирования РАН, 23.

[25] Rong, C., Lu, W., Wang, X., Du, X., Chen, Y., & Tung, A. K. (2013). Efficient and scalable processing

of string similarity join. Knowledge and Data Engineering, IEEE Transactions on, 25(10), 2217-2230.

[26] Rytsareva, I., & Kalyanaraman, A. (2012). An efficient MapReduce algorighm for parallelizing large-

scale graph clustering.

[27] Vernica, R., Carey, M. J., & Li, C. (2010, June). Efficient parallel set-similarity joins using MapReduce.

In Proceedings of the 2010 ACM SIGMOD International Conference on Management of data (pp. 495-

506). ACM.

[28] Yao, B., Li, F., & Kumar, P. (2010, March). K nearest neighbor queries and knn-joins in large relational

databases (almost) for free. In Data engineering (ICDE), 2010 IEEE 26th international conference on

(pp. 4-15). IEEE.

[29] Yu, C., Zhang, R., Huang, Y., & Xiong, H. (2010). High-dimensional knn joins with incremental

updates. Geoinformatica, 14(1), 55-82.

[30] Zhang, C., Li, F., & Jestes, J. (2012, March). Efficient parallel kNN joins for large data in MapReduce.

In Proceedings of the 15th International Conference on Extending Database Technology (pp. 38-49).

ACM.

[31] Zhang, C., Li, J., & Wu, L. (2013). Optimizing Theta-Joins in a MapReduce Environment. International

Journal of Database Theory and Application, 6(4), 91-107.

[32] Zhang, C., Wu, L., & Li, J. (2013). Efficient processing distributed joins with bloomfilter using

mapreduce. Int J Grid Distrib Comput, 6(3), 43-58.

[33] Zhang, S., Han, J., Liu, Z., Wang, K., & Xu, Z. (2009, August). Sjmr: Parallelizing spatial join with

mapreduce on clusters. In Cluster Computing and Workshops, 2009. CLUSTER'09. IEEE International

Conference on (pp. 1-8). IEEE.

 Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications (MECSJ)

ISSUE (2) , May (2017)

 www.mecsj.com

Page | 36

[34] Zhang, X., Chen, L., & Wang, M. (2012). Efficient multi-way theta-join processing using mapreduce.

Proceedings of the VLDB Endowment, 5(11), 1184-1195.

	I. Introduction
	A. Query optimization

	I.
	II. Background/Literature review
	A. Multi way join
	 Replicated join
	 Star join
	 Theta join
	B. Equi join
	 Repartition join
	 Map-only join
	 Replication side join
	 Semi join
	C. Similarity join
	D. kNN join
	E. Top-k join
	F. Graph similarity join
	G. Bloom join
	H. MRFA join
	I. Intersection filter
	J. Parallel join: semi join
	 A semi join using bloom filter
	 A semi join using selection
	 The adaptive semi join
	K. Filter join
	 Common attribute joins
	 Distinct attribute joins
	 Chain
	 Star fact
	 Star-Dim
	L. SJMR: parallelizing spatial join
	M. Massively parallel sort merge (MPSM) joins
	 B-MPSM algorithm
	 P-MPSM algorithm
	 D-MPSM algorithm
	Acknowledgment
	References

